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Relation between body condition score and conception rate  
of Japanese Black cows

A. Setiaji1,*, T. Oikawa2, and D. Arakaki2

Objective: This study analyzes interactions of body condition score (BCS) with other factors 
and the effect of BCS on estimates of genetic paremeters of conception rate (CR) in Japanese 
Black cows. 
Methods: Factors affecting CR were analyzed through the linear mixed model, and genetic 
parameters of CR were estimated through the threshold animal model. 
Results: The interactions between BCS and each season and the number of artificial 
inseminations (AI) was significant (p<0.05), but that between BCS and parity showed 
no significance for CR. High CR was observed with BCS 3 in autumn (0.56±0.01) and 
BCS 4 in summer (0.56±0.02). The highest CR with BCS 3 (0.56±0.02) and BCS 4 (0.55 
±0.01) was observed at first AI. With BCS 5, however, the highest CR (0.55±0.08) was 
observed at second AI.
Conclusion: The model with BCS was notably conducive to the estimation of genetic para­
meters because of a low deviance information criterion of heritability that, nevertheless, 
was slightly lower than the model without BCS.
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INTRODUCTION

In the recent decade, the price of Japanese Black calves has doubled because of the high 
cost of calf production in the Japanese cow-calf operating system. High production cost is 
primarily due to a decline in reproductive efficiency. The low efficiency in calf-producing 
operations is mostly influenced by the rate of artificial insemination (AI) success [1], which 
is controlled by numerous factors, including sperm quality [2], season [3], AI technician 
[4], parity [5], health, nutrition and heat-detection methods for the herd [6]. Conception 
rate (CR) is one of the indicators commonly used for evaluating the success of AI in cattle. 
  Body condition score (BCS) is a method for the management and monitoring of the 
amount and accumulated relative fitness of cattle [7]. Body condition of cows after calving is 
closely related to AI efficiency, i.e., success of first insemination, CR, and interval from 
first insemination to gestation [8,9]. Assuming that the success of AI is related to BCS, the 
magnitude and change of BCS after calving needs to be investigated to determine wheth­
er nutritional goals are achieved and to identify potential problems associated with failure 
of AI [10]. Cows with poor BCS may have longer time to express estrous after calving. On 
the other hand, cows with high BCS are usually phenotyped as obese or overweight animals 
requiring plural servicings for conception and as exhibiting inefficiency of the normal re­
productive cycle [11,12]. The interaction between BCS, seasonal changes and feeding 
regimes direcly affects the reproductive performance of cows [3]. The aim of this study 
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was to analyze the interactions between BCS with other fac­
tors and the effect of BCS on estimates of genetic paremeters 
of CR in Japanese Black cows.

MATERIALS AND METHODS

Data collection
Insemination and pedigree records of Japanese Black cows 
were obtained from Artificial Insemination Center of Northern 
Okinawa. A data set comprised 6,034 records of AI carried 
out on 2,114 cows by eight AI technicians. Collected be­
tween January 2015 and December 2017 from 114 farms, 
the records comprised 5,003 cows with and 1,031 without 
BCS data. The total number of animals in the pedigree was 
16,334. BCS was judged at the time of insemination and scaled 
using 5-point system from one (1) for attenuated animals to 
five (5) for obese animals [13,14]. CR was coded 1 if the cow 
was inseminated and subsequently concieved successfully, 
otherwise 0. Cow was declared as conceived after two evalu­
ations: non-return at 21 days after AI, and palpation per 
rectum at 35 to 40 days after AI. Approval from the committee 
on the care and use of animals was not sought because data 
used in this study were collected from field records; no field 
experiments were conducted.

Categories and statistical analysis
The number of records were BCS 2 (n = 349), BCS 3 (n = 
2,448), BCS 4 (n = 2,079), and BCS 5 (n = 127). Parity was 
coded 1 (n = 848), 2 (n = 877), 3 (n = 740), 4 (n = 536), 5 (n 
= 593), 6 (n = 525), 7 (n = 509), 8 (n = 449), 9 (n = 328), 10 
and more (n = 629). AI was conducted in and coded “spring” 
(March to May; n = 1,814), “summer” (June to August; n = 
1,416), “autumn” (September to November; n = 1,452) and 
“winter” (December to February; n = 1,352). AI was desig­
nated as first AI (n = 3,482), second AI (n = 1,370), third AI 
(n = 574), and fourth or subsequent AI (n = 608).
  GLIMMIX procedure with contrasts of statistical analysis 
system 9.3 (SAS) [15] was used to analyze the effect of the 
interaction between BCS and parity, BCS and season, and 
BCS and AI number. Farm was treated as a random effect. 
The linear model was as follows:

  yijklmn = Bi+Pj+Sk+Al+(BP)ij+(BS)ik+(BA)il+cm+fn+eijklmn

where yijklmn is the observation of CR, Bi the ith fixed effect of 
BCS, Pj the jth fixed effect of parity, Sk the kth fixed effect of 
season, Al the lth fixed effect of AI number, (BP)ij, (BS)ik, and 
(BA)il are effects of interactions between ith of BCS with jth 
effect of parity, kth effect of season and lth effect of AI num­
ber, recpectively, cm is the random effect of cow/animal, fn is 
the random effect of farm and eijklmn the random residual of 
yijklmn. 

Estimate of genetic parameters
Genetic parameters of CR were estimated through single 
animal model, in matrix notation the mixed linear model 
was:

  y = Xb+Z1a+Z2pe+e 

where, y is the a vector of CR, b is a vector of fixed effect, X 
is an incidence matrix for the fixed effect, a is the vector of 
random genetic additive effect, pe is the vector of permanent 
environmental effect, Z1 and Z2 are incidence matrix, and e is 
the residuals vector.
  This analysis was repeated twice; the first with BCS as fixed 
effect and the second without BCS to know the impact of 
BCS on genetic parameters estimated.
  The Bayesian procedure [16] assuming that the normal 
distribution with density as:
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 the additive genetic variance, 
permanent environmental variance and residual variance, 
respectively. The variance covariance components were esti­
mated through Bayesian procedures THRGIBBS1F90 [17], 
that yielded a period of data collection of 1,000,000 itera­
tions after a burn-in period of 100,000 iterations. Values of 
standard error were estimated through POSTGIBBS1F90 of 
the Geweke diagnostic test [18]. A posteriori distribution 
was obtained with 4,000 samples which were taken for every 
250 cycles. This estimation was repeated twice; the first with 
BCS and the second without BCS analysis. Geweke criteria 
and error of Monte Carlo chain (MCE) were obtained by 
calculating the variance of samples for each component di­
vided by the number of samples to monitor the convergence. 

RESULTS 

The reproductive performance of cows from 114 farms is 
summarized in Table 1. BCS, and parity were statistically 
significant (p<0.05) for CR, whereas season and AI num­
ber were not. The interaction between BCS and between 
season and BCS and AI number was significant, however, 
that between BCS and parity was not significant (Table 2). 
Accordingly, multiple comparisons between BCS, and season; 
BCS, and AI number were tested afterwards.
  In terms of the interaction between BCS and the season 
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for CR, the BCS showed no significant difference among the 
seasons. Nevertheless, significant seasonal differences were 
observed in BCS 3 and 4. A high CR was seen with BCS 3 in 
autumn and with BCS 4 in summer (Table 3).
  The interaction between BCS and AI number is shown in 
Table 4. The effect of BCS, AI number and their interactions 
were significant differences. Significant differences of AI num­
ber were observed in BCS 3, BCS 4, and BCS 5. The highest 
CR with BCS 3 was observed in cows at first AI, and CR de­
creased as the AI number increased. With BCS 5, the highest 
CR was seen in cows at second AI. Also, significant differ­
ences among the BCS were observed only at the second and 
third AI.
  In comparing estimated heritability between animals with 
and without BCS, the latter was slightly higher than the for­

mer (Table 5). Heritability with BCS showed a low posterior 
standard deviation. Values for Geweke (p-value), MCE, and 
deviance information criterion (DIC) for estimated herita­
bility with BCS were lower than that without BCS. 

DISCUSSION

The mean CR of the Japanese Black cow in this study (0.52± 

Table 1. Summary of records and conception rate 

Factor N Mean±SEM Minimum Maximum

BCS 5,001 3.39 ± 0.01 2 5
Parity 2,114 5.07 ± 0.04 1 18
AI numbers at conception 3,482 1.75 ± 0.02 1 12
Number of cows at farm 114 52.92 ± 5.38 1 322
Conception rate

All data 6,034 0.52 ± 0.01 0 1
BCS 2 349 0.48 ± 0.03
BCS 3 2,448 0.52 ± 0.01
BCS 4 2,079 0.51 ± 0.01
BCS 5 127 0.47 ± 0.04

SEM, standard error of the mean; BCS, body condition score.

Table 2. Type III tests of significance for factors of conception rate 

Factor Df Mean square F value p-value

BCS 3 0.67 2.81 0.0141
Parity 9 0.43 1.91 0.0472
Season 3 0.58 2.42 0.0636
AI number 3 0.48 2.09 0.1078
BCS × parity 27 0.21 0.94 0.3795
BCS × season 9 0.47 2.03 0.0163
BCS × AI number 9 0.49 2.01 0.0177

BCS, body condition score; AI, artificial insemination.

Table 3. Interaction between BCS and season of conception rate 
(LSM±SE) 

Season
BCS

2 3 4 5

Spring 0.44 ± 0.05 0.51 ± 0.03b 0.48 ± 0.02b 0.38 ± 0.07
Summer 0.47 ± 0.06 0.50 ± 0.03b 0.56 ± 0.01a 0.44 ± 0.08
Autumn 0.51 ± 0.05 0.56 ± 0.01a 0.52 ± 0.03ab 0.56 ± 0.08
Winter 0.54 ± 0.07 0.53 ± 0.02ab 0.50 ± 0.03ab 0.51 ± 0.09

BCS, body condition score; LSM, lease squares means; SE, standard 
error.
a,b Different superscripts within a column show significant differences 
(p < 0.05).

Table 4. Interaction between BCS and AI number of conception rate 
(LSM±SE)

AI  
 number

BCS

2 3 4 5

1 0.49 ± 0.04 0.56 ± 0.02a 0.55 ± 0.01a 0.49 ± 0.06a,b

2 0.53 ± 0.05x 0.55 ± 0.02a,x 0.48 ± 0.02a,y 0.55 ± 0.08a,x

3 0.45 ± 0.07x 0.47 ± 0.03a,x 0.44 ± 0.03b,x 0.29 ± 0.09b,y

≥ 4 0.36 ± 0.06 0.31 ± 0.03b 0.43 ± 0.03b 0.50 ± 0.09a,b

BCS, body condition score; AI, artificial insemination; LSM, lease squares 
means; SE, standard error.
a,b Different superscripts within a column shows significant differences 
(p < 0.05).
x,y Different superscripts within a row shows significant differences 
(p < 0.05).
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0.01) was slightly higher than previously reported (0.48±0.02) 
[19]. Compared with other breeds, CR in Japanese Black was 
slightly lower than the estimates of beef cows in New Zealand 
(0.55) [20] and of local zebu cows (0.57) [21]. Although fac­
tors for the lower CR of Japanese Black cows are still unclear, 
some studies have indicated that a decrease in reproductive 
performance of this breed might be due to genetic improve­
ment programs that have heavily focused on meat quantity 
and meat quality, especially on beef marbling [1-22]. 
  In this study, BCS and parity have a significant effect (p< 
0.05) on CR. Significance of parity in Japanese Black cows 
has also been described [23], but without showing any sig­
nificant effect of BCS on CR. Furthermore, in the current 
study, the interaction between BCS and each of season and 
AI number was significant (p<0.05); however, no significant 
effect of the interaction between BCS and parity has been 
shown in the aforementioned study. In contrast, a statitically 
significant interaction between BCS and parity for CR has 
been described in Florida beef cattle [24]. 
  Cows with BCS  5 showed the lowest CR in spring and 
summer. On the other hand, cows with BCS 4 showed the 
highest CR in summer. Low CR of cows serviced in spring is 
consistent with the previous studies in terms of seasonal effect 
on reproductive performace of Japanese Black cows, whereas 
low CR has been described in cows serviced in spring and 
winter [19]. Japanese Black cows need more servicings for 
conception in spring [25]. 
  In terms of AI numbers, CR showed a significant differ­
ence between the second and third servicing. As the AI 
number increased, the CR of cows with BCS 3 and 4 de­
creased. The lowest CR of cows with BCS 5 was observed in 
the third AI. This result also agrees with a study on the num­
ber of servicings for CR of Japanese Black cattle [19], where 
a low CR is shown at a second or later insemination. Various 
factors have been reported for low CR on repeated AI: ge­
netic [26], nutritional [27] and hormonal causality [28,29]. 
Cows with low BCS that fail to conceive at the first AI need 
nutritional treatment to improve CR in subsequent AI. 
  In the present study, search of the literature produced no 
estimates of heritability of CR in Japanese Black cows. The 
estimated heritability of CR (0.012 and 0.021) was lower than 
that reported for Holstein cows (0.027 to 0.049) in Japan [30]. 
Low DIC of the model with BCS indicated that the model 
was better than the model without BCS [31]. The statistical 
significance of BCS for CR comfirms that BCS should be in­
cluded in the genetic analysis of CR records.

CONCLUSION

The present study showed that Japanese Black cows with a 
moderate BCS had a good conception rate. The model with 
BCS fitted well with the estimation of genetic parameters 

because of low DIC of heritability that, albeit, was slightly 
low.
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