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Genome-wide association study to reveal new candidate genes 
using single-step approaches for productive traits of  
Yorkshire pig in Korea

Jun Park1,*

Objective: The objective is to identify genomic regions and candidate genes associated 
with age to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye 
muscle area (EMA) in Yorkshire pig.
Methods: This study used a total of 104,380 records and 11,854 single nucleotide poly­
morphism (SNP) data obtained from Illumina porcine 60K chip. The estimated genomic 
breeding values (GEBVs) and SNP effects were estimated by single-step genomic best 
linear unbiased prediction (ssGBLUP).
Results: The heritabilities of AGE, ADG, BF, and EMA were 0.50, 0.49, 0.49, and 0.23, 
respectively. We identified significant SNP markers surpassing the Bonferroni correction 
threshold (1.68×10–6), with a total of 9 markers associated with both AGE and ADG, and 4 
markers associated with BF and EMA. Genome-wide association study (GWAS) analyses 
revealed notable chromosomal regions linked to AGE and ADG on Sus scrofa chromosome 
(SSC) 1, 6, 8, and 16; BF on SSC 2, 5, and 8; and EMA on SSC 1. Additionally, we observed 
strong linkage disequilibrium on SSC 1. Finally, we performed enrichment analyses using 
gene ontology and Kyoto encyclopedia of genes and genomes (KEGG), which revealed 
significant enrichments in eight biological processes, one cellular component, one molecular 
function, and one KEGG pathway.
Conclusion: The identified SNP markers for productive traits are expected to provide 
valuable information for genetic improvement as an understanding of their expression.
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INTRODUCTION

Over time, genetic improvement in pig breeding for economically important traits has 
been achieved through continuous research efforts. Productive traits, including average 
daily gain (ADG), age to 105 kg (AGE), backfat thickness (BF), and eye muscle area (EMA) 
exhibit moderate to high heritability, enabling their enhancement through selective 
breeding strategies [1]. ADG and AGE directly impact pig growth [2,3], while BF plays a 
crucial role in the reproductive performance of Landrace and Yorkshire sows [4], thereby 
influencing the breeding potential of the maternal line.
  According to the Korean Swine Performance Recording Standards (KSPRS) established 
by the Ministry of Agriculture, Food and Rural Affairs (MAFRA), performance testing is 
conducted within the weight range of 70 to 110 kg, with the current endpoint set at 90 kg. 
To assess growth trait performance, the number of days required to reach 90 kg and backfat 
thickness are considered. However, the 90 kg endpoint weight has remained unchanged 
since its establishment in 1984, reflecting the market weight of finishing pigs at that time. 
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Considering the prevailing trend of market weights exceed­
ing 110 kg, there is a consensus emerging that the endpoint 
weight for performance testing should be adjusted accord­
ingly. Consequently, a new adjustment formula based on a 
weight of 105 kg has been developed by the National Institute 
of Animal Science (NIAS). This updated formula aligns more 
closely with market weights, enabling accurate evaluation of 
productive traits in breeding animals and enhancing genetic 
improvement and efficiency.
  Genome-wide association study (GWAS) have been exten­
sively applied to various domains, including the identification 
of genetic variants associated with economically significant 
traits. Most economic traits in livestock exhibit quantitative 
nature with polygenic inheritance patterns, thereby making 
their underlying genetic mechanisms not fully elucidated. 
Multiple candidate genes and significant markers have been 
reported for the same trait, often showing associations be­
tween multiple traits at the same genomic locus. While these 
findings are inherent to quantitative traits, GWAS by single 
marker analysis may have limited power in detecting quanti­
tative trait loci (QTLs) and mapping accuracy [5]. Moreover, 
the cost associated with analyzing single nucleotide poly­
morphism (SNP) panels and the availability of genomic data 
across individuals pose additional challenges. Several recent 
studies have employed this approach to explore production, 
carcass, and reproductive traits in livestock species [6-8].
  In this study, our objective is using single-step approaches 
to identify genomic regions and candidate genes associated 
with productive traits (AGE, ADG, BF, and EMA) in York­
shire pig. Additionally, we conducted gene ontology (GO) 
and Kyoto encyclopedia of genes and genomes (KEGG) en­
richment analyses to gain deeper insights into the underlying 
biological processes and functional terms associated with 
the identified candidate genes for productive traits.

MATERIALS AND METHODS

Animals and phenotypes
The animals used in this study were raised in five great-grand-
parents farms in Korea. In brief, a total of 104,380 Yorkshire 
(17,899 males and 86,481 females) born between 2015 and 
2021 were used in this study (Supplementary Table S1). In 
this study, productive traits such as AGE, ADG, BF, and EMA 
adjusted to 105 kg were calculated as reported by the NIAS 
in Korea (https://www.nias.go.kr/images/promote/result/file/ 
2021_2_5.pdf).

Single nucleotide polymorphism data and quality 
control
In this study, the Illumina Porcine 60K V1 and V2 were used, 
and V2 was selected as the reference panel for imputation. 
Prior to imputation, phasing was performed using Shapeit4 

[9], which is a fast and accurate method for haplotype estima­
tion that uses a PBWT-based approach to select informative 
conditioning haplotypes. Imputation was then conducted 
using Impute5 [10], which assumes phased samples with no 
missing alleles. After imputation, quality control (QC) was 
performed by PLINK v1.90 [11] to exclude SNPs with low 
call rates (<90%), low minor allele frequencies (<0.01), or 
deviation from Hardy-Weinberg equilibrium (10–6). After 
QC, we used the number of animals and SNPs were 11,854 
and 29,732, respectively.

Statistical analysis
We estimated the genetic parameters of AGE, ADG, BF, and 
EMA by average information restricted maximum likelihood 
method. We considered two approaches: pedigree-based best 
linear unbiased prediction (PBLUP) and single-step genomic 
best linear unbiased prediction (ssGBLUP). Each trait was 
estimated with a single-trait animal model, and the equation 
as follows:

  y = Xb+Za+e

where y is the vector of phenotypic observations; b is the 
vector of fixed effects (herd-birth year-season, sex); a is the 
vector of additive genetic effects; e is the vector of residuals; 
and X and Z are the incidence matrices for b, a, and e. Heri­

tability was estimated as 
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ware family [15], which includes RENUMF90, BLUPF90+, 
and POSTGSF90, for the GWAS. The p-values were used to 
generate a Manhattan plot using the R software and CMplot 
package [16,17].

Linkage analyses
In this study, we conducted linkage analyses between the most 
significant regions associated with teat traits and the identi­
fied SNPs within these regions. To investigate the distribution 
of linkage disequilibrium (LD) blocks in the genotype data 
after completing SNP QC, we utilized the Haploview software, 
which generates marker quality statistics, LD information, 
haplotype blocks, population haplotype frequencies, and single 
marker association statistics in a user-friendly format [18]. 
Haploview calculates various pairwise measures of LD and 
utilizes them to create a graphical representation. Thus, we 
performed LD block analysis and visualization of the identi­
fied SNPs on SSC 1 in the three pig breeds. The visualization 
using Haploview represents LD values between markers with 
colors, with stronger associations displayed in shades of red.

Identification of candidate genes and functional 
enrichment analysis
We conducted gene annotation for the markers showing sig­
nificance in the GWAS analysis. The significance level was 
determined using the Bonferroni suggestive threshold, and 
markers surpassing this threshold were subjected to gene 
annotation and functional enrichment analysis. To identify 
genes within the identified QTL regions, particularly within 
the significant windows, we utilized the ensemble Sus scrofa 
11.1 database (https://www.ensembl.org/biomart). Further­
more, to gain deeper insights into the biological processes 
associated with these regions, we performed GO and KEGG 
analyses using the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID v6.8, https://david.ncifcrf.
gov/). GO terms and KEGG pathways showing significant 
enrichment were determined based on a p-value threshold 
of <0.05. Through these analyses, we gained valuable knowl­
edge regarding crucial molecular pathways and biological 

functions associated with the observed genetic variations.

RESULTS AND DISCUSSION

Heritability
We compared the heritability of productive traits obtained 
between PBLUP and ssGBLUP (Table 1). Except for EMA, 
all other traits exhibited heritability values of 0.45 or higher. 
Comparing PBLUP and ssGBLUP, the estimated heritability 
values were consistently higher with ssGBLUP. The ssGBLUP 
method, which incorporates both pedigree and genotypic 
information, theoretically provides more accurate estimates 
of genetic parameters [6].

Genome-wide association study and linkage 
disequilibrium analysis
In the majority of instances, livestock's primary economic 
characteristics comprise quantitative traits, with the excep­
tion of select specific traits. These quantitative traits possess 
an intricate genetic architecture, rendering the identification 
of candidate genes a paramount goal in animal breeding 
programs. These traits represent pivotal determinants that 
significantly influence the financial gains of agricultural en­
terprises, thus necessitating their careful consideration during 
breeding assessments. In this study, SNP markers showing 
significance above the Bonferroni correction (1.68×10–6) 
were found to be identical for AGE and ADG, with a total of 
9 markers, while for BF and EMA, 4 markers were identified 
(Table 2; Figure 1). The region with the highest number of 
markers detected, excluding BF, was found on SSC 1 for all 
three traits, and for BF, two markers were found on SSC 5. 
Previous GWAS studies on productive traits adjusted to 100 
kg in Duroc, Landrace, Yorkshire, and Pietrain pig popula­
tions reported significant SNPs associated with ADG on 
SSC 1, 3, 7, 10, and 13, and significant SNPs associated with 
AGE on SSC 1, 3, 4, 6, 7, 8, 9, and 13 [19].
  In our study, the significant regions identified through 
GWAS for AGE and ADG were consistently the same. The 
most significant marker for both traits was ALGA0006623, 
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Table 2. Significant SNPs associated with productive traits and their annotated candidate genes

Traits SNP SSC Position p-value1) Variant Gene annotation2)

AGE (d) ALGA0006623 1 160347188 1.26E-15 5_prime_UTR ENSSSCG00000048538
ASGA0004992 1 160210902 8.97E-11 Intergenic CDH20 (293757), ENSSSCG00000048538 (130158)
ASGA0005017 1 161540913 5.45E-09 Intron CCBE1
ALGA0006690 1 162147201 6.19E-08 Intergenic MALT1 (2321), ALPK2 (28372)
H3GA0003149 1 162192627 6.36E-08 Intron ALPK2
ASGA0005021 1 161657225 1.13E-06 Intron CPLX4
ALGA0112558 1 270826950 6.37E-06 Intron ABL1
MARC0037204 1 53549421 7.03E-06 Intergenic CEP162 (107022), TBX18 (288768)
ALGA0006707 1 162345362 2.34E-05 Intron ENSSSCG00000052156
ALGA0012897 2 30421810 3.85E-06 Intergenic FSHB (22536), KCNA4 (183754)
DRGA0004818 4 59203000 1.58E-05 Intergenic PKIA (1225426), PEX2 (49337)
ALGA0105098 6 69291261 7.32E-11 Intron ENSSSCG00000033497
H3GA0023150 7 113231192 1.30E-05 Intron CATSPERB
ALGA0047819 8 43646405 1.84E-07 Intron CPE
ASGA0038525 8 32008618 8.44E-06 Intron APBB2
ALGA0113142 10 48069639 3.11E-05 Intron PRPF18
ALGA0064467 12 7009388 2.27E-05 Intergenic RPL38 (110624), ENSSSCG00000046071 (566256)
ALGA0080239 14 98332707 2.77E-05 Intron PRKG1
ALGA0085484 15 54398519 2.28E-05 Intron GSR
DRGA0016186 16 44656503 2.67E-07 Intergenic SREK1 (36409), ENSSSCG00000063417 (316356)

ADG (g) ALGA0006623 1 160347188 1.60E-16 5_prime_UTR ENSSSCG00000048538
ASGA0004992 1 160210902 1.70E-11 Intergenic CDH20 (293757), ENSSSCG00000048538 (130158)
ASGA0005017 1 161540913 3.45E-09 Intron CCBE1
ALGA0006690 1 162147201 4.91E-08 Intergenic MALT1 (2321), ALPK2 (28372)
H3GA0003149 1 162192627 5.04E-08 Intron ALPK2
ASGA0005021 1 161657225 7.06E-07 Intron CPLX4
ALGA0112558 1 270826950 2.61E-06 Intron ABL1
MARC0037204 1 53549421 8.37E-06 Intergenic CEP162 (107022), TBX18 (288768)
ALGA0006707 1 162345362 1.34E-05 Intron ENSSSCG00000052156
ALGA0108601 1 160978649 2.34E-05 Intergenic MC4R (204525), ENSSSCG00000026454 (204238)
ALGA0006619 1 160247234 2.63E-05 Intron ENSSSCG00000055614
ASGA0004994 1 160223900 3.27E-05 Intergenic CDH20 (306755), ENSSSCG00000048538 (117160)
ALGA0006602 1 159538854 3.35E-05 Intron RNF152
ALGA0012897 2 30421810 1.08E-05 Intergenic FSHB (22536), KCNA4 (183754)
DRGA0004818 4 59203000 1.97E-05 Intergenic PKIA (1225426), PEX2 (49337)
ALGA0105098 6 69291261 4.60E-10 Intron ENSSSCG00000033497
H3GA0023150 7 113231192 1.02E-05 Intron CATSPERB
ALGA0047819 8 43646405 1.16E-06 Intron CPE
ALGA0113142 10 48069639 2.94E-05 Intron PRPF18
ALGA0064467 12 7009388 5.21E-06 Intergenic RPL38 (110624), ENSSSCG00000046071 (566256)
ALGA0080239 14 98332707 7.24E-06 Intron PRKG1
ALGA0085484 15 54398519 4.08E-06 Intron GSR
DRGA0016186 16 44656503 8.14E-08 Intergenic SREK1 (36409), ENSSSCG00000063417 (316356)

BF (mm) ALGA0012897 2 30421810 5.07E-10 Intergenic FSHB (22536), KCNA4 (183754)
H3GA0013013 4 74199117 9.53E-06 Intergenic TOX (83966), NSMAF (37709)
MARC0036560 5 66103958 1.56E-11 Intron CCND2
H3GA0016584 5 66223267 3.44E-08 Intergenic CCND2 (108696), PARP11 (220227)
ASGA0026705 5 89547600 2.14E-05 Intergenic CRADD (67888), SOCS2 (33490)
H3GA0017689 6 22794083 1.77E-05 Intergenic ENSSSCG00000044968 (1634422), CDH8 (129698)
H3GA0020739 7 29948363 3.25E-05 5_prime_UTR IP6K3
ASGA0038525 8 32008618 1.68E-09 Intron APBB2
ALGA0119031 9 36252818 8.07E-06 Intergenic SLN (10413), ENSSSCG00000058217 (17116)

SNP, single nucleotide polymorphism; SSC, Sus scrofa chromosome; AGE, age to 105 kg; UTR, untranslated region; ADG, average daily gain; BF, backfat 
thickness; EMA, eye muscle area.
1) Bold indicate p-values exceeding the Bonferroni significance threshold. 
2) Gene symbols when intronic or gene symbols (distance) adjacent to the marker when intergenic.
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which is located in the 5' untranslated region region of the 
gene ENSSSCG00000048538. ALGA0006623 has been re­
ported as a significant marker and gene associated with lean 
meat percentage (LMP) and ADG in American Duroc and 
Canadian Duroc pigs [20]. Furthermore, it was identified as 
the most significant SNP in relation to the fatness trait in 
pigs [21]. The marker ASGA0038525 was found to be com­
mon for AGE, BF, and EMA, with significance above the 
Bonferroni threshold observed for BF. For complex quanti­
tative traits, it is often more appropriate to assume a nonlinear 
relationship of gene effects rather than a linear one [19], as 
genes may contribute differently, and pleiotropic effects of 
QTLs between traits can occur [5]. Pleiotropic QTLs are 
common in the pig genome, as exemplified by QTLs related 
to vertebral number, body length, and nipple number located 
on SSC 7 [22]. The ASGA0038525 marker identified in our 
study can be considered as an example of such pleiotropic 
effects on quantitative traits. Additionally, the 6 markers 
found on SSC 1 can be regarded as having pleiotropic effects 
on AGE, ADG, and EMA.
  In this study, we observed strong LD among significant 
markers identified on SSC 1 for AGE, ADG, and EMA, as 
confirmed by the LD analysis using Haploview (Figure 2; 
Supplementary Figure S1). Specifically, we detected LD be­
tween the SNP ASGA0005017 located within the CCBE1 
gene and adjacent SNPs, spanning a 1.9 Mb region for AGE 
and ADG, and a 1.8 Mb region for EMA. Within these re­
gions, the widely known MC4R gene, associated with pig 
growth, fat deposition, and feed intake [23,24], is located, 
indicating its potential as a candidate gene for the observed 
LD and significant effects within this region. Therefore, if 
MC4R is considered a causal gene, this supports the presence 
of LD and suggests that the observed significant effects in 
this region may be influenced by the observed LD.
  According to a GWAS study on feed efficiency and related 

traits in Yorkshire and Duroc pigs, the markers ASGA0004992, 
ASGA0005017, and ALGA0006707, located on SSC 1, were 
reported as markers associated with ADG in Yorkshire pigs 
in the PigQTLdb [25]. The marker ALGA0006707, located 
near the MC4R gene, is widely known as a gene that signifi­
cantly influences pig growth traits and average feed intake 
[23,26-28]. The ALPK2 gene on SSC 1 plays important roles 
in cardiogenesis and is specifically expressed in muscle tissue, 
including the longissimus dorsi muscle, where it was upreg­
ulated in Wannanhua pigs compared to Yorkshire pigs [29,30]. 
The ABL1 gene has been reported as a gene associated with 
fat metabolism in Yorkshire pigs [31] and considered as a 
candidate gene related to meat-to-fat ratio [32]. The CPE 
gene is hypothesized to be a candidate gene for meat quality 
traits related to intramuscular fat level and glucose metabo­
lism in bovines [33].
  The CCND2 gene's expression is significantly associated 
with the lead SNP in the liver, lung, and spleen, and it has 
been reported as a gene that influences backfat thickness 
[34]. CCND2, a candidate gene for back quality in Landrace 
pigs, is also essential for the growth of pancreatic islets, which 
regulate animal growth through hormonal activities [35]. 
Recent research identified CCND2 as the most likely causal 
gene for backfat thickness and osteochondrosis in pigs [36]. 
The APBB2 gene, located on SSC 8, may have roles in cellular 
and physiological functions related to BF accumulation [37].
  In this study, we compared the markers and candidate 
genes showing significance for each growth trait with previ­
ous research findings. While some of the identified markers 
and candidate genes were consistent with traits reported in 
previous studies, we also found instances where candidate 
genes associated with ADG showed significance for other 
traits such as BF or LMP in other studies. This suggests that 
economic traits in pigs, being quantitative traits, can exhibit 
pleiotropic effects. Furthermore, the involvement of genetic 

Table 2. Significant SNPs associated with productive traits and their annotated candidate genes (Continued)

Traits SNP SSC Position p-value1) Variant Gene annotation2)

EMA (cm2) ASGA0005017 1 161540913 5.26E-08 Intron CCBE1
ALGA0006623 1 160347188 1.69E-07 5_prime_UTR ENSSSCG00000048538
ALGA0006690 1 162147201 3.13E-07 Intergenic MALT1 (2321), ALPK2 (28372)
H3GA0003149 1 162192627 3.59E-07 Intron ALPK2
ALGA0007330 1 187227296 3.00E-06 Intron ARMH4
ASGA0004992 1 160210902 7.09E-06 Intergenic CDH20 (293757), ENSSSCG00000048538 (130158)
ASGA0005021 1 161657225 2.17E-05 Intron CPLX4
ALGA0001723 1 22652735 2.35E-05 Intron ENSSSCG00000063202
ALGA0025513 4 65186206 3.27E-06 Intron NCOA2
ASGA0092589 6 155868122 1.89E-05 3_prime_UTR PLPP3
ASGA0032514 7 30234691 4.26E-06 Intron GRM4
ASGA0038525 8 32008618 2.25E-05 Intron APBB2

SNP, single nucleotide polymorphism; SSC, Sus scrofa chromosome; AGE, age to 105 kg; UTR, untranslated region; ADG, average daily gain; BF, backfat 
thickness; EMA, eye muscle area.
1) Bold indicate p-values exceeding the Bonferroni significance threshold. 
2) Gene symbols when intronic or gene symbols (distance) adjacent to the marker when intergenic.
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associations between productive traits can also account for 
these results. Moreover, the research findings specifically 
related to EMA in pigs were sparse, and no reports on the 

candidate genes identified through GWAS were found. How­
ever, we observed that the markers showing significance for 
EMA in this study were mostly overlapping with the markers 

Figure 1. Manhattan plots and quantile – quantile (Q-Q) plot of genome-wide association analysis for productive traits; (A) age to 105 kg (AGE); 
(B) average daily gain (ADG); (C) backfat thickness (BF); (D) eye muscle area (EMA). Y-axis represents –log10 of p-values and X-axis represents chro-
mosome number. The red horizontal line indicates the Bonferroni significance threshold 1.68×10–6. The green horizontal line indicates the Bonfer-
roni suggestive threshold 3.36×10–5.
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identified for ADG and AGE, and they also included markers 
found for BF. Therefore, the markers and candidate genes 
identified in this study provide valuable information for 
understanding the complex genetic influences underlying 
quantitative traits.

Gene ontology terms and Kyoto encyclopedia of genes 
and genomes pathway enrichment analysis
In this study, gene set enrichment analyses were conducted 
to examine the associations between various terms and pro­
ductive traits. The results revealed significant enrichments in 
8 biological processes, 1 cellular component, 1 molecular 
function, and 1 KEGG pathway. Among them, the most sig­
nificant GO term identified was GO:0002020, which pertains 
to protease binding (Table 3). Although the GO terms asso­
ciated with the CCDH20 and CDH8 genes were frequently 
observed, there have been no reports on their association with 
productive traits in pigs and other livestock.
  Positive regulation of interleukin-2 production (GO:003 

2743) refers to any process that activates or increases the fre­
quency, rate, or extent of interleukin-2 production. One of 
the genes related to this term, MAP3K7, has been reported 
to be associated with growth traits [38]. Positive regulation 
of bone resorption (GO:0045780) refers to any process that 
activates or increases the frequency, rate, or extent of bone 
resorption. FSHB, one of the genes associated with this term, 
has been reported to be linked to the major gene controlling 
litter size [39], and it also affects reproductive capacity [40].
  Phosphatidylinositol phosphate biosynthetic process (GO: 
0046854) refers to the chemical reactions and pathways that 
result in the formation of phosphatidylinositol phosphate. 
Phosphatidylinositol is involved in various physiological 
functions in the body, including muscle contraction, cell 
proliferation, and differentiation [41]. Furthermore, one of 
the genes associated with this term, IP6K3, has recently been 
announced as a candidate gene related to body weight [5]. 
IP6K3 encodes inositol hexakisphosphate kinase 3, which 
generates inositol pyrophosphates and regulates diverse 

Figure 2. Linkage disequilibrium (LD) block analysis between significant markers found Sus scrofa chromosome (SSC) 1 region using Haploview 
for average daily gain (ADG). The red horizontal line indicates the Bonferroni significance threshold 1.68×10–6. 
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Table 3. Significant gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathways associated with productive traits 
in Yorkshire pig (p<0.05)

Gene ontology and KEGG pathway Count p-value Gene

GO:0032743-positive regulation of interleukin-2 production 2 0.03 ABL1, MALT1
GO:0045780-positive regulation of bone resorption 2 0.02 FSHB, MC4R
GO:0046854-phosphatidylinositol phosphorylation 2 0.02 IP6K3, SOCS2
GO:0042981-regulation of apoptotic process 3 0.02 ABL1, CRADD, MALT1
GO:0034332-adherens junction organization 2 0.04 CDH20, CDH8
GO:0016339-calcium-dependent cell-cell adhesion via plasma membrane cell adhesion molecules 2 0.04 CDH20, CDH8
GO:0007043-cell-cell junction assembly 2 0.04 CDH20, CDH8
GO:0098742-cell-cell adhesion via plasma-membrane adhesion molecules 2 0.05 ABL1, MALT1
GO:0002020-protease binding 3 0.01 CRADD, MALT1, CCBE1
GO:0016342-catenin complex 2 0.04 CDH20, CDH8
ssc04917: Prolactin signaling pathway 2 0.03 CCND2, SOCS2
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cellular functions, including metabolism and body weight. 
Mice lacking this gene exhibited lower growth rates, impaired 
metabolism, and shorter lifespans [42].
  The SOCS2 gene is one of the genes associated with cell 
growth, metabolism, and immunity [43]. It has been reported 
as a gene that prevents the occurrence of various tumors and 
liver diseases caused by fat accumulation [44,45]. The results 
of the GO enrichment analyses further support the involve­
ment of numerous genes in growth development.

CONCLUSION

The identified SNP markers for productive traits are expect­
ed to provide valuable information for genetic improvement 
as an understanding of their expression. In this study, we have 
identified novel genes (ENSSSCG00000052156, ENSSSCG 
00000033497, ENSSSCG00000046071) associated with pro­
ductive traits in Yorkshire pigs. Furthermore, the GO and 
KEGG analyses revealed that, except for GO:0032743 and 
GO:0042981, the remaining GO terms and KEGG pathways 
have not been directly implicated in the study of productive 
traits in Yorkshire pigs. With the accumulation of more phe­
notype and SNP data in the future, it is anticipated that more 
effective SNP markers can be identified.
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Supplemntary Figure S1 LD block analysis between significant markers found SSC 1 region using Haploview for 3 
(A) AGE and (B) EMA. The red horizontal line indicates the Bonferroni significance threshold 1.68 × 10-6 4 
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Table S1. Basic statistics for productive traits of Yorkshire pig. 7 


Traits No. of 


records 


Mean SD1 Minimum Maximum CV (%)3 


AGE (days) 104,380 156.98 12.38 121.33 222.36 7.89 


ADG (g) 104,380 672.98 52.38 472.21 865.41 7.78 


BF (mm) 104,380 14.12 2.96 6.14 33.48 20.96 


EMA (cm2) 104,380 29.73 3.12 11.31 64.64 10.49 
1Standard deviation; 2coefficient of variation. 8 
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Figure S1. LD block analysis between significant markers found SSC 1 region using Haploview for (A) 12 


AGE and (B) EMA. The red horizontal line indicates the Bonferroni significance threshold 1.68 × 10-6 13 
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