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Development of an index that decreases birth weight,  
promotes postnatal growth and yet minimizes selection  
intensity in beef cattle
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Masashi Kinukawa2, Kazuhito Kurogi3, and Shohei Toda2

Objective: The main goal of our current study was to improve the growth curve of meat 
animals by decreasing the birth weight while achieving a finishing weight that is the same 
as that before selection but at younger age.
Methods: Random regression model was developed to derive various selection indices to 
achieve desired gains in body weight at target time points throughout the fattening process. 
We considered absolute and proportional gains at specific ages (in weeks) and for various 
stages (i.e., early, middle, late) during the fattening process.
Results: The point gain index was particularly easy to use because breeders can assign a 
specific age (in weeks) as a time point and model either the actual weight gain desired or a 
scaled percentage gain in body weight.
Conclusion: The point gain index we developed can achieve the desired weight gain at any 
given postnatal week of the growing process and is an easy-to-use and practical option for 
improving the growth curve.
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INTRODUCTION

Genetic antagonism exists between the goal of rapid, efficient, early growth of food-animal 
progeny and the desire for small, low-maintenance parental strains [1-3]. In particular, it 
is important to reduce dystocia by decreasing the birth weight of progeny relative to the 
dam’s size. Expected responses to selection for body weight in cattle are a slightly greater 
increase in weight and degree of maturity at age of selection but also substantial increases 
in weight at all other ages, including maturity, due to positive genetic correlations between 
body weights throughout growth [4]. Therefore, restricted indices for selection on birth 
weight have been proposed for terminal sire lines used for heifers [5]. 
 Achieving rapid growth to reach a specified final weight while reducing or maintaining 
birth weight is a significant challenge, not only from the perspective of the beef produc-
tion industry, but also in terms of methane emissions to reduce climate change. A restricted 
selection index on birth weight cannot predict selection responses regarding the genetic 
gains for the entire fattening process unless the genetic correlations between birth and all 
other time points along the growth continuum are known. To address this issue, random 
regression (RR) models have been applied for the genetic evaluation of longitudinal data 
such as growth, lactation, and egg production curves [6-10]. In particular, RR models have 
been applied to analyze the entire fattening process [11-14], and a stage gain index based 
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on RR coefficients, i.e., Legendre polynomials was developed 
for the lactation curve that minimized selection intensity [9]. 
 In dairy cattle, the trait of interest is the stage increase in 
milk production, such as 305-day milk yield. However, most 
of the traits followed in beef cattle are genetic gains at specif-
ic time points such as weights at calving, as yearlings, and at 
slaughter. Achieving genetic weight gain at a specific point 
in the fattening process requires developing a point gain index. 
However, even though desired genetic gains at targeted times 
might be realized, multiple growth curves could achieve these 
results, especially when the time points of interest are far 
apart. Therefore, it will be important to obtain desired gains 
at various target times during the fattening process by applying 
minimum selection intensity and to develop optimal indices 
that predict the effects of achieving these time-point–specific 
gains throughout the entire fattening process. 
 Even when the same magnitude of genetic gain is achieved 
at a particular time point, the lower the intensity of selection, 
the lower the inbreeding coefficients [15]. In addition, the 
lower the selection intensity, the more likely the selection 
goal will be achieved. Using a low selection intensity provides 
the opportunity to increase the constraint by adding other 
time points to incorporate desired gains at target points during 
the fattening process. For example, an eigenvector index was 
developed to modify the lactation curve by using eigenvectors 
of genetic (co)variances of Legendre polynomial coefficients 
[16]. Therefore, here we compared point gain, eigenvector, 
and stage gain indices for their ability to achieve genetic 
gains at specific times during growth. An optimal index to 
fulfill desired gains at various time points during the fatten-
ing process can be constructed by using the genomically 
enhanced breeding value (GEBV) for Legendre polynomial 
coefficients [17-19]. The goal of our current study was to de-
velop a selection index that achieved desired time-point–
specific gains at the lowest selection intensity and that predicted 
the selection responses on weight gains throughout the entire 
fattening process. We provide an example to demonstrate 
the approach.

MATERIALS AND METHODS

We used a RR model based on Legendre polynomials to de-
velop our indices.

Point gain index to achieve the desired gains at the 
specific times in fattening process with minimum 
selection intensity
The point gain index (Ip) is described as
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expected genetic gains being equal to the desired genetic gains.
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fore, the solution to equation (4) is

 

7 
 

 146 

� � ∆𝜶𝜶𝑳𝑳��𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 � 𝝀𝝀��𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔� , 147 

 148 

where 𝝀𝝀 � �𝜆𝜆� 𝜆𝜆𝟐𝟐 … . . 𝜆𝜆𝒔𝒔� is a vector of Lagrange multipliers. 149 

Setting the partial derivatives of f with respect to ∆𝜶𝜶𝑳𝑳 equal to zero leads to 150 

 151 

��
�∆𝜶𝜶𝑳𝑳 � 2�𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 � 𝑺𝑺� 𝝀𝝀 = 0.   (2) 152 

 153 

Setting the partial derivatives of f with respect to 𝝀𝝀 equal to zero leads to  154 

 155 

��
�𝝀𝝀 � 𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔 � 𝑺𝑺.   (3)   156 

 157 

Equations (2) and (3) can be written jointly as 158 

 159 

�2�𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮_𝜶𝜶𝑳𝑳��� 𝑺𝑺𝑺
𝑺𝑺 𝑺𝑺� �

∆𝜶𝜶𝑳𝑳
𝝀𝝀 � � � 𝑺𝑺∆𝑮𝑮𝒔𝒔� .    (4) 160 

 161 

According to the principle of Lagrange multipliers, the solution vector ∆𝜶𝜶𝑳𝑳 in equation (4) would 162 

lead to the minimum selection intensity and satisfy the constraints of the expected genetic gains being 163 

equal to the desired genetic gains. 164 

The inverse of the coefficient matrix of equation (4) can be obtained through inversion by 165 

partitioning [23]. Therefore, the solution to equation (4) is 166 

 167 

�∆𝜶𝜶𝑳𝑳𝝀𝝀 � � �
1
2 �𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����

�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳 �2�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����
� � 0
∆𝑮𝑮𝒔𝒔� . 168 

 169 
 

7 
 

 146 

� � ∆𝜶𝜶𝑳𝑳��𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 � 𝝀𝝀��𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔� , 147 

 148 

where 𝝀𝝀 � �𝜆𝜆� 𝜆𝜆𝟐𝟐 … . . 𝜆𝜆𝒔𝒔� is a vector of Lagrange multipliers. 149 

Setting the partial derivatives of f with respect to ∆𝜶𝜶𝑳𝑳 equal to zero leads to 150 

 151 

��
�∆𝜶𝜶𝑳𝑳 � 2�𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 � 𝑺𝑺� 𝝀𝝀 = 0.   (2) 152 

 153 

Setting the partial derivatives of f with respect to 𝝀𝝀 equal to zero leads to  154 

 155 

��
�𝝀𝝀 � 𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔 � 𝑺𝑺.   (3)   156 

 157 

Equations (2) and (3) can be written jointly as 158 

 159 

�2�𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮_𝜶𝜶𝑳𝑳��� 𝑺𝑺𝑺
𝑺𝑺 𝑺𝑺� �

∆𝜶𝜶𝑳𝑳
𝝀𝝀 � � � 𝑺𝑺∆𝑮𝑮𝒔𝒔� .    (4) 160 

 161 

According to the principle of Lagrange multipliers, the solution vector ∆𝜶𝜶𝑳𝑳 in equation (4) would 162 

lead to the minimum selection intensity and satisfy the constraints of the expected genetic gains being 163 

equal to the desired genetic gains. 164 

The inverse of the coefficient matrix of equation (4) can be obtained through inversion by 165 

partitioning [23]. Therefore, the solution to equation (4) is 166 

 167 

�∆𝜶𝜶𝑳𝑳𝝀𝝀 � � �
1
2 �𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����

�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳 �2�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����
� � 0
∆𝑮𝑮𝒔𝒔� . 168 

 169 

.

 The first set of equations is equal to

 

8 
 

The first set of equations is equal to 170 

 171 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 .    (5) 172 

 173 

Conversely, ∆𝜶𝜶𝑳𝑳 in (5) has to satisfy the pre-specified gains as shown in (1), i.e., 𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔 . It 174 

can be proved as 175 

 176 

𝑺𝑺∆𝜶𝜶𝑳𝑳 � 𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺���� ∆𝑮𝑮𝒔𝒔 � ∆𝑮𝑮𝒔𝒔 . 177 

 178 

Index coefficients ��� for the selection index based on Legendre polynomial coefficients are 179 

shown as 180 

 181 

� � �𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 . 182 

 183 

Finally, the point gain index based on Legendre polynomial coefficients that would achieve the 184 

pre-specified gains with the least selection intensity is 185 

 186 

𝐼𝐼� �  𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� � � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� �𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����∆𝑮𝑮𝒔𝒔� .  187 

 188 

This is a general case when the number (s) of some specific points for desired gains is less than or 189 

equal to that of fitted Legendre coefficients (k+1), i.e., � � � � 1.  190 

In particular, when k+1 = s, S is a square matrix, such that 191 

 192 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺𝑺𝑺���𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳��𝑺𝑺��∆𝑮𝑮𝒔𝒔 � 𝑺𝑺��∆𝑮𝑮𝒔𝒔 , 193 

 194 

.   (5)

 Conversely, ∆αL in (5) has to satisfy the pre-specified gains 
as shown in (1), i.e., 

8 
 

The first set of equations is equal to 170 

 171 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 .    (5) 172 

 173 

Conversely, ∆𝜶𝜶𝑳𝑳 in (5) has to satisfy the pre-specified gains as shown in (1), i.e., 𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔 . It 174 

can be proved as 175 

 176 

𝑺𝑺∆𝜶𝜶𝑳𝑳 � 𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺���� ∆𝑮𝑮𝒔𝒔 � ∆𝑮𝑮𝒔𝒔 . 177 

 178 

Index coefficients ��� for the selection index based on Legendre polynomial coefficients are 179 

shown as 180 

 181 

� � �𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 . 182 

 183 

Finally, the point gain index based on Legendre polynomial coefficients that would achieve the 184 

pre-specified gains with the least selection intensity is 185 

 186 

𝐼𝐼� �  𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� � � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� �𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����∆𝑮𝑮𝒔𝒔� .  187 

 188 

This is a general case when the number (s) of some specific points for desired gains is less than or 189 

equal to that of fitted Legendre coefficients (k+1), i.e., � � � � 1.  190 

In particular, when k+1 = s, S is a square matrix, such that 191 

 192 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺𝑺𝑺���𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳��𝑺𝑺��∆𝑮𝑮𝒔𝒔 � 𝑺𝑺��∆𝑮𝑮𝒔𝒔 , 193 

 194 

. It can be proved as

 

8 
 

The first set of equations is equal to 170 

 171 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 .    (5) 172 

 173 

Conversely, ∆𝜶𝜶𝑳𝑳 in (5) has to satisfy the pre-specified gains as shown in (1), i.e., 𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔 . It 174 

can be proved as 175 

 176 

𝑺𝑺∆𝜶𝜶𝑳𝑳 � 𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺���� ∆𝑮𝑮𝒔𝒔 � ∆𝑮𝑮𝒔𝒔 . 177 

 178 

Index coefficients ��� for the selection index based on Legendre polynomial coefficients are 179 

shown as 180 

 181 

� � �𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 . 182 

 183 

Finally, the point gain index based on Legendre polynomial coefficients that would achieve the 184 

pre-specified gains with the least selection intensity is 185 

 186 

𝐼𝐼� �  𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� � � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� �𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����∆𝑮𝑮𝒔𝒔� .  187 

 188 

This is a general case when the number (s) of some specific points for desired gains is less than or 189 

equal to that of fitted Legendre coefficients (k+1), i.e., � � � � 1.  190 

In particular, when k+1 = s, S is a square matrix, such that 191 

 192 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺𝑺𝑺���𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳��𝑺𝑺��∆𝑮𝑮𝒔𝒔 � 𝑺𝑺��∆𝑮𝑮𝒔𝒔 , 193 

 194 

.

 Index coefficients (b) for the selection index based on 
Legendre polynomial coefficients are shown as

 

8 
 

The first set of equations is equal to 170 

 171 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 .    (5) 172 

 173 

Conversely, ∆𝜶𝜶𝑳𝑳 in (5) has to satisfy the pre-specified gains as shown in (1), i.e., 𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔 . It 174 

can be proved as 175 

 176 

𝑺𝑺∆𝜶𝜶𝑳𝑳 � 𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺���� ∆𝑮𝑮𝒔𝒔 � ∆𝑮𝑮𝒔𝒔 . 177 

 178 

Index coefficients ��� for the selection index based on Legendre polynomial coefficients are 179 

shown as 180 

 181 

� � �𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 . 182 

 183 

Finally, the point gain index based on Legendre polynomial coefficients that would achieve the 184 

pre-specified gains with the least selection intensity is 185 

 186 

𝐼𝐼� �  𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� � � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� �𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����∆𝑮𝑮𝒔𝒔� .  187 

 188 

This is a general case when the number (s) of some specific points for desired gains is less than or 189 

equal to that of fitted Legendre coefficients (k+1), i.e., � � � � 1.  190 

In particular, when k+1 = s, S is a square matrix, such that 191 

 192 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺𝑺𝑺���𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳��𝑺𝑺��∆𝑮𝑮𝒔𝒔 � 𝑺𝑺��∆𝑮𝑮𝒔𝒔 , 193 

 194 

.

 Finally, the point gain index based on Legendre polynomial 
coefficients that would achieve the pre-specified gains with 
the least selection intensity is

 

8 
 

The first set of equations is equal to 170 

 171 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 .    (5) 172 

 173 

Conversely, ∆𝜶𝜶𝑳𝑳 in (5) has to satisfy the pre-specified gains as shown in (1), i.e., 𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔 . It 174 

can be proved as 175 

 176 

𝑺𝑺∆𝜶𝜶𝑳𝑳 � 𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺���� ∆𝑮𝑮𝒔𝒔 � ∆𝑮𝑮𝒔𝒔 . 177 

 178 

Index coefficients ��� for the selection index based on Legendre polynomial coefficients are 179 

shown as 180 

 181 

� � �𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 . 182 

 183 

Finally, the point gain index based on Legendre polynomial coefficients that would achieve the 184 

pre-specified gains with the least selection intensity is 185 

 186 

𝐼𝐼� �  𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� � � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� �𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����∆𝑮𝑮𝒔𝒔� .  187 

 188 

This is a general case when the number (s) of some specific points for desired gains is less than or 189 

equal to that of fitted Legendre coefficients (k+1), i.e., � � � � 1.  190 

In particular, when k+1 = s, S is a square matrix, such that 191 

 192 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺𝑺𝑺���𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳��𝑺𝑺��∆𝑮𝑮𝒔𝒔 � 𝑺𝑺��∆𝑮𝑮𝒔𝒔 , 193 

 194 

. 

 This is a general case when the number (s) of some specific 
points for desired gains is less than or equal to that of fitted 
Legendre coefficients (k+1), i.e., s≤k+1. 
 In particular, when k+1 = s, S is a square matrix, such that

 

8 
 

The first set of equations is equal to 170 

 171 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 .    (5) 172 

 173 

Conversely, ∆𝜶𝜶𝑳𝑳 in (5) has to satisfy the pre-specified gains as shown in (1), i.e., 𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔 . It 174 

can be proved as 175 

 176 

𝑺𝑺∆𝜶𝜶𝑳𝑳 � 𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺���� ∆𝑮𝑮𝒔𝒔 � ∆𝑮𝑮𝒔𝒔 . 177 

 178 

Index coefficients ��� for the selection index based on Legendre polynomial coefficients are 179 

shown as 180 

 181 

� � �𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 . 182 

 183 

Finally, the point gain index based on Legendre polynomial coefficients that would achieve the 184 

pre-specified gains with the least selection intensity is 185 

 186 

𝐼𝐼� �  𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� � � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� �𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����∆𝑮𝑮𝒔𝒔� .  187 

 188 

This is a general case when the number (s) of some specific points for desired gains is less than or 189 

equal to that of fitted Legendre coefficients (k+1), i.e., � � � � 1.  190 

In particular, when k+1 = s, S is a square matrix, such that 191 

 192 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺𝑺𝑺���𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳��𝑺𝑺��∆𝑮𝑮𝒔𝒔 � 𝑺𝑺��∆𝑮𝑮𝒔𝒔 , 193 

 194    

8 
 

The first set of equations is equal to 170 

 171 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 .    (5) 172 

 173 

Conversely, ∆𝜶𝜶𝑳𝑳 in (5) has to satisfy the pre-specified gains as shown in (1), i.e., 𝑺𝑺∆𝜶𝜶𝑳𝑳 � ∆𝑮𝑮𝒔𝒔 . It 174 

can be proved as 175 

 176 

𝑺𝑺∆𝜶𝜶𝑳𝑳 � 𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺���� ∆𝑮𝑮𝒔𝒔 � ∆𝑮𝑮𝒔𝒔 . 177 

 178 

Index coefficients ��� for the selection index based on Legendre polynomial coefficients are 179 

shown as 180 

 181 

� � �𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳���∆𝜶𝜶𝑳𝑳 . 182 

 183 

Finally, the point gain index based on Legendre polynomial coefficients that would achieve the 184 

pre-specified gains with the least selection intensity is 185 

 186 

𝐼𝐼� �  𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� � � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳� �𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺����∆𝑮𝑮𝒔𝒔� .  187 

 188 

This is a general case when the number (s) of some specific points for desired gains is less than or 189 

equal to that of fitted Legendre coefficients (k+1), i.e., � � � � 1.  190 

In particular, when k+1 = s, S is a square matrix, such that 191 

 192 

∆𝜶𝜶𝑳𝑳 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺�𝑺𝑺𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳  𝑺𝑺����∆𝑮𝑮𝒔𝒔 � 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳𝑺𝑺𝑺𝑺𝑺���𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝜶𝜶𝑳𝑳��𝑺𝑺��∆𝑮𝑮𝒔𝒔 � 𝑺𝑺��∆𝑮𝑮𝒔𝒔 , 193 

 194 

,

then

 S∆αL = ∆Gs.
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 Note that many possible growth curves could satisfy the 
desired weight gains at the targeted times in the fattening 
process. The various indices derived from different sets of 
∆αL that satisfy the same vector of desired gains would have 
different selection intensities. This indicates that given a set 
of desired genetic gains, the solution to achieve the fixed set 
of genetic gains is not unique. 

Eigenvector index to achieve desired gains at specific 
time points in the fattening process by using the 
minimum selection intensity 
The eigenvector index (Ie) using n eigenvectors of the addi-
tive genetic RR covariance matrix is described as
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Stage gain index to achieve the desired gains at specific 
stages during the fattening process by using the 
minimum selection intensity
We developed the stage gain index (Is) based on RR coeffi-
cients to achieve the desired genetic gains at specific growth 
stages by using the lowest possible selection intensity. The 
stage gain index (Is) is described in the same way as the point 
gain index (Ip), that is
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 In the previous section regarding the point gain index (Ip), 
S∆αL= ∆Gs.
 However, in the current section regarding the stage gain 
index (Is), the vector ∆Gs is the desired genetic gains for s 
stages, and

 ∆Gs = (∆Gs1,∆Gs2,….,∆Gss), 

where ∆Gsj is the desired genetic gain for the jth stage in the 
fattening process. Note that ∆Gsj is not the jth specific time 
point during growth but the jth specific stage during the fat-
tening process. Therefore, S does not correspond to a specific 
point but to a specific stage during the fattening process. That 
is, S is described as
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where φi(t) is the ith order of Legendre polynomial evaluat-
ed at week t standardized, and mj and nj are the first and last 
week of age of the jth stage, respectively. In this study, the 
fattening process was measured in units of weeks of age; ac-
cordingly stage was divided into units of weeks of age. Note 
that the only difference between the point gain and stage 
gain indices is the definition of S. The point gain index and 
stage gain index correspond to the genetic gains for specific 
points and specific stages, respectively; all other equations 
are completely the same between these two indices. There-
fore, as in the previous section on the point gain index (Ip), 
the difference in Legendre polynomial coefficients (∆αL) (α 
after selection – α before selection) in the stage gain index (Is) 
can be described as
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growth curve, respectively. The three parameters, A, B, and K are used from [24] such as 768, 3.4, and 327 

0.03, respectively. Weekly body weights from birth through 130 weeks of age were estimated from 328 

Gompertz growth curve by using the three parameters [24]. Covariates for Legendre RR curve are 329 

shown as φ in Appendix. RR coefficients before selection are estimated from weekly body weights 330 

from birth through 130 weeks of age and covariates for Legendre RR curve. The desired curve was 331 

derived according to the breeding goal that the birth weight was less than before selection and that the 332 

130-week-old weight was achieved earlier than before selection. Birth weight; body weight at 5, 81, 333 

.

 As mentioned previously about the point gain index, we 
can choose an ideal unique stage gain index to achieve the 
desired gains at specific stages by using a minimum selec-
tion intensity when the number (s) of restrictions or desired 
gains is less than the number of Legendre polynomial coeffi-
cients (k+1), i.e., s≤k+1. 

Numerical example
We assumed the genetic covariance matrix of Legendre poly-
nomial coefficients (Table 1) given the fattening process in 
Japanese Black steers [24,25] (Supplementary file). In the 
current study, quartic Legendre polynomials (k = 4) were 
assumed as done previously [26,27,13]. Japanese Black steers 
are slaughtered at approximately 30 months of age [28], so 
we fitted a growth curve to 130 weeks of age, corresponding 
to 30 months of age. We assumed that the growth curve be-
fore selection was similar to the curve from [24], who fitted 
a Gompertz growth curve. Instead, we fitted a RR model for 
that curve to develop a selection index based on RR coeffi-
cients. Gompertz growth curve depends on three parameters, 
i.e., A, B, and K are the asymptotic weight, growth starting 
point, and maturity rate of the growth curve, respectively. 
The three parameters, A, B, and K are used from [24] such 
as 768, 3.4, and 0.03, respectively. Weekly body weights from 
birth through 130 weeks of age were estimated from Gompertz 
growth curve by using the three parameters [24]. Covariates 
for Legendre RR curve are shown as φ in Supplementary file. 
RR coefficients before selection are estimated from weekly 
body weights from birth through 130 weeks of age and co-
variates for Legendre RR curve. The desired curve was derived 
according to the breeding goal that the birth weight was 
less than before selection and that the 130-week-old weight 
was achieved earlier than before selection. Birth weight; body 
weight at 5, 81, 127, 128, and 130 weeks of age during the 
fattening process; and the Legendre coefficients before selec-
tion and those of the desired curve are shown (Table 2). 
 The desired gain at a specific point or a stage can be any 
value that satisfies the breeder’s purpose. However, we as-
sumed a desired curve as a criterion, to compare the point 
gain, stage gain, and eigenvector indices and to show that 
the procedures we developed in this study are correct. We 
set four break points at weeks of age during the fattening 
process from birth to 130 weeks of age and used four combi-

Table 1. Genetic (co)variances of Legendre coefficients (kg)

Order 0 1 2 3 4 CV1)

0 4,502.4 1,367.7 –1,270.1 –25.2 227.1 0.112 
1 - 1,062.8 67.7 –154.6 11.2 0.103 
2 - - 698.2 –88.6 –110.5 0.547 
3 - symmetric - 38.1 10.0 0.270 
4 - - - - 18.3 0.363 

1) Coefficient of variation =  square root of genetic variance of Legendre coefficient/|Legendre coefficients before selection in Table 2|
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nations of break points, such that combination 1 = 0, 40, 120, 
and 130 weeks; combination 2 = 0, 26, 106, and 130 weeks; 
combination 3 = 0, 26, 120, and 130 weeks; and combination 
4 = 0, 42, 86, and 130 weeks. The specific weeks of age chosen 
for combination 4 roughly divide the entire 130-week growth 
period into thirds. The time points of 40 and 120 weeks were 
derived from the inflection points of the growth curve before 
selection (Table 2). The times of 26 and 106 weeks were derived 
from the inflection points of the first eigenvector function 
for the covariance matrix of the genetic Legendre coeffi-
cients (Table 1). 
 The desired gains at selected specific points and stages 
were computed from the difference between the body weight 
from the desired growth curve and that before selection (i.e., 
BW in desired growth curve – BW before selection) (Table 
2). The desired growth curve was chosen such that the body 
weight at 130 weeks of age before selection could be achieved 
approximately 2 weeks earlier. Similarly, the desired growth 
curve was chosen such that body weight at birth was approxi-
mately 2.5 kg less than that before selection. The genetic gain 
during the targeted stage was computed from the difference 
between the desired curve and that before selection. For ex-
ample, during the specific stage from birth through 41 weeks 
of age, the desired stage gain = 

15 
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 BWi before selection. 
 Regarding the eigenvector index, we had five eigenvectors 
because the order of matrix of Legendre coefficients is k+1, 
i.e., 5. We could provide a maximum of 5 index traits as prod-
ucts between the eigenvector and Legendre coefficients 
expressed in GEBV, that is, 

 (ε1'GEBVαL, ε2'GEBVαL,…,ε5'GEBVαL). 

 We compared two, three, four, and five index traits in the 

eigenvector index, i.e., 

two traits = ε1'GEBVαL and ε2'GEBVαL; 
three traits = ε1'GEBVαL, ε2'GEBVαL, and ε3'GEBVαL; 
four traits = ε1'GEBVαL, ε2'GEBVαL, ε3'GEBVαL, and 

ε4'GEBVαL; and
five traits = ε1'GEBVαL, ε2'GEBVαL, ε3'GEBVαL, ε4'GEBVαL, 

and ε5'GEBVαL.

 We examined the effects of point gain selection on body 
weights throughout the entire fattening process by compar-
ing the point gain index with the stage gain index when the 
number of stages was 1, i.e., the target period was the entire 
process. The reliability of GEBVj (j = 0, 1,.., k) for the jth or-
der of Legendre polynomial coefficients was assumed to be 
0.7. From the point that inaccurate estimation of population 
parameters could bias estimates of theoretical gains, in addi-
tion to the reliability of 0.7, we also added reliability of 0.5 
and 0.6 to the point gain selection index in which the four 
target ages were 0, 42, 86, and 130 weeks and the respective 
desired gains were –2.5, 15.7, 16.6, and 5.4 kg.

RESULTS AND DISCUSSION

Gains achieved by using the point gain, stage gain, and 
eigenvector indices
We set 4 combinations of specific weeks of age for the desired 
gains in the numerical example. Therefore, we had a 4-point 
gain index, with four specific time points (weeks of age) 
throughout the fattening process; these four time points di-
vided the fattening process into three stages and thus created 
a 3-stage gain index. The target ages in the 4 combinations 
of 3-stage and 4-point gain indices are shown (Table 3). The 
restrictions on birth weight and body weight at 130 weeks of 
age were the same among the 4 combinations. The selection 
intensity and achieved body weight (Table 4), which is the 
sum of the weight before selection and genetic gain, are based 
on the point gain, eigenvector, and stage gain indices (Table 
3). Each of the 4 combinations represents 3 stages from birth 
through 130 weeks of age. For example, the four ages selected 
for combination 1 (0, 40, 120, and 130 weeks) yields the 3 
stages of 0 through 39 weeks, 40 throughout 119 weeks, and 
120 through 130 weeks. The difference between the achieved 
genetic gain due to index selection at a specific point or stage 
and the desired genetic gain was zero (Table 4), indicating 
that the indices we developed were valid. Because the order 
of the covariance matrix of Legendre polynomial coefficients 
(k+1 = 5) is greater than the number of restrictions or de-
sired gains at the specific points (4) or stages (3), the index 
with the lowest selection intensity is uniquely selected. Thus, 
the point gain and eigenvector indices each achieved a 2.5 
kg lower birth weight. Moreover, these indices achieved the 

Table 2. Birth weight (kg); body weight (kg) at 5, 81, 127, 128, and 
130 weeks of age; and Legendre coefficients before selection and of 
the desired body weight curve 

Item Before selection Desired curve

Birth weight 27.4 24.9
Body weight at (wk)

5 40.2 38.8
81 570.7 589
127 713.5 718.4
128 715.8 720.6
130 720.4 725.8

Legendre coefficients
α01) 601.4 617.6
α1 317.9 320.1
α2 –48.3 –57.4 
α3 –22.9 –22.3 
α4 11.8 13.8

1) αi indicates order i.
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same body weight at 130 weeks of age as before selection 
(720.4 kg) but approximately 2 weeks earlier (Table 4). 
 The selection intensity and achieved body weights due to 
the point gain index were completely the same as those of 
the eigenvector index with five index traits, because all five 
eigenvectors were derived from the covariance matrix of 
Legendre polynomial coefficients. The selection intensity of 
the stage gain index was greater than that of the point gain 

index (Table 4), because restriction by the stage gain index 
would be stricter than that by the point gain index. That is, 
restriction by the stage gain index involves the long-term 
weight gains during the fattening process, whereas restric-
tion by the point gain index addresses a specific time point 
along the fattening process. Weights at birth and at 130 weeks 
were lower for the stage index than the point or eigenvector 
gain indices. Therefore, whether the point gain index or stage 
gain index is preferable depends on whether breeders prefer 
to model genetic gains at a specific age or at a particular growth 
stage. As is the practice for beef fattening, if breeders want to 
increase body weight at a particular age, the point gain index 
would be preferable. However, if breeders want to model long-
term weight gains such as those during the early, middle, 
and late stages of fattening, the stage gain index would be 
preferable. 
 The restrictions on the birth weight and body weight at 
130 weeks were the same among the 4 combinations, such 
that the birth and finishing weights were identical among 4 
combinations (Table 4). Even though the restriction on weight 
gains throughout the fattening process, except for those at 
birth (week 0) and during the final fattening week (week 
130), differed among the 4 combinations (Table 3), the weight 
gains at 5, 81, 127, and 128 weeks were almost the same 
among all combinations (Table 4). The time points of 0, 42, 
86, and 130 weeks (combination 4) essentially divided the 
entire fattening process into thirds. Dividing the fattening 
process into equal periods and assigning these dividing points 

Table 3. Age (weeks) and desired gain for 4 combinations of 3-stage 
gain and 4-point gain indices

Combination Age (wk)
Desired gain (kg)

Stage gain index Point gain index

1 0 - –2.5
40 231.5 15

120 1,214.1 6.5
130 44.5 5.4

2 0 - –2.5
26 62.4 8.5

106 1,286.7 9.3
130 141 5.4

3 0 - –2.5
26 62.4 8.5

120 1,383.1 6.5
130 44.5 5.4

4 0 - –2.5
42 262.6 15.7
86 829.5 16.6

130 398.1 5.4

Table 4. Selection intensity and achieved body weights due to index selection with desired increases (kg) for 4 points or 3 stages during the fat-
tening process

Combination No1) 1 2

Stage gain index Point gain index Eigen vector index2) Stage gain index Point gain index Eigen vector index 

Selection intensity 0.412 0.21 0.21 0.43 0.358 0.358
Birth weight 24.3 24.9 24.9 23.5 24.9 24.9
Body weight at (wk)

5 39.3 38.2 38.2 38.8 39.9 39.9
81 588.4 576.6 576.6 588.6 585.3 585.3
127 717 719.3 719.3 716.4 719.1 719.1
128 719 721.4 721.4 718.4 721.3 721.3
130 723.2 725.8 725.8 722.6 725.8 725.8

Combination No
3 4

Stage gain index Point gain index Eigen vector index Stage gain index Point gain index Eigen vector index 
Selection intensity 0.416 0.356 0.356 0.447 0.399 0.399
Birth weight 23.8 24.9 24.9 23.2 24.9 24.9
Body weight at (wk)

5 39 39.9 39.9 38.5 40.1 40.1
81 588.5 585.6 585.6 588.8 588.3 588.3
127 717 719.1 719.1 715.8 719.3 719.3
128 719 721.3 721.3 717.8 721.4 721.4
130 723.2 725.8 725.8 722 725.8 725.8

1) Combination No corresponds to that of Table 3. 
2) Number of index traits of eigenvector index is 5.
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to specific weeks of age would be a viable option, although 
the weeks chosen as targeted points for desired gains would 
be at the breeder’s discretion.

Comparison of the number of index traits in 
eigenvector selection
The selection intensity, birth weight, and body weight at 5, 
81, 127, 128, and 130 weeks of age by using the eigenvector 
and point gain indices are shown (Table 5). We had five ei-
genvectors because the order of the covariance matrix of 
Legendre polynomial coefficients was five. The first, second, 
and third eigenvectors explained 83.8%, 15.9%, and 0.3% of 
the genetic variation during the whole fattening process, 
whereas the fourth and fifth eigenvectors explained almost 
0%. Therefore, as mentioned regarding the numerical exam-
ple, we set four combinations of eigenvectors. The first and 
the second eigenvectors are treated as index traits when the 
eigenvector number is 2 (Table 5). That is, the two index traits 
are ε1'GEBVαL and ε2'GEBVαL. In the same way, the first, second, 
and third eigenvectors are treated as index traits when the 
eigenvector number is 3 (Table 5), that is, the three index 
traits are ε1'GEBVαL, ε2'GEBVαL, and ε3'GEBVαL, and so on 
for all four conditions.
 The difference between the desired and achieved weight 
gains was zero, demonstrating that our developed method 
was valid. As mentioned earlier, the eigenvector index and 
point gain index yield identical results when all eigenvectors 
are derived from the covariance matrix of Legendre polyno-
mial coefficients. Consequently, the selection intensity and 
all body weights throughout growth (Table 5) were the same 
between the eigenvector index with 5 index traits and the 
point gain index. The proportion of eigenvector selection 
that explains the genetic variance throughout the fattening 
process—represented as the genetic covariance matrix of 
Legendre polynomial coefficients—decreases as the number 
of index traits decreases, that is, from 5 to 4, from 4 to 3, and 
from 3 to 2.
 The selection intensity increased as the number of index 
traits decreased, indicating that the rigor of selection had to 

increase to achieve the same genetic gains as the proportion 
of eigenvector selection that explains the genetic variance 
throughout the fattening process decreased. Furthermore, 
the deviation of body weights at 5 and 81 weeks of age from 
eigenvector selection using all five index traits increased as 
the number of index traits decreased. Therefore, eigenvector 
index selection when the number of index traits was less 
than the order of matrix of Legendre polynomial coefficients 
was inferior to both the eigenvector index derived by using 
the covariance matrix of Legendre coefficients and to the 
point gain index. 
 For the purpose of modeling increasing growth while re-
ducing or maintaining birth weight, we set the target ages at 
0 weeks and 130 weeks, with respective desired gains of –2.5 
and 5.4 kg. We computed these desired gains according to 
the differences in body weight between the desired curve 
and that before selection (Table 2). All of the eigenvector in-
dices achieved the same desired gain, such that the birth 
weight (24.9 kg) and weight at 130 weeks of age (725.8 kg) 
were the same among all indices.
 The eigen functions for the first, second, and third eigen-
vectors are shown (Figure 1). The first eigen function increased 
until approximately 80 weeks of age and then declined grad-
ually. The second eigen function was negative from birth until 
around 80 weeks of age and then increased from around 80 
to 130 weeks of age (final fattening age). The eigenvector in-
dex likely helps to improve the growth curve by exploiting 
the properties of the first and second eigenvectors rather 
than the weight gains at particular ages during the fattening 
process.

Selection intensity and Legendre coefficients at 
different target weight gains 
The selection intensity, difference in Legendre coefficients 
before and after selection (∆αL), and index weights for stage, 
point gain, and eigenvector indices with different desired in-
creases (listed as restriction values), are shown (Table 6). The 
number of stages in the stage gain index is one (Table 6), i.e., 
the entire fattening period is a single stage. The genetic gain 

Table 5. Comparison of the number of eigenvectors in eigenvector index selection

Item Eigenvector index Point gain index

No of eigenvectors 5 4 3 2 -
Selection intensity 0.138 0.138 0.149 0.393 0.138
Difference   between intended  
 and achieved weight gain (kg)

0 0 0 0 0

Birth weight (kg) 24.9 24.9 24.9 24.9 24.9
Body weight (kg) at (wk)

5 38 38 37.9 36 38
81 574.1 574 574.4 560 574.1
127 718.8 718.8 718.9 718.4 718.8
128 721.1 721.1 721.2 720.9 721.1
130 725.8 725.8 725.8 725.8 725.8
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for the entire fattening period was 1,490 kg, which we calcu-
lated from the Legendre function (Table 2), that is, (
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Table 6. Selection intensity and Legendre coefficients of stage gain, point gain, and eigenvector indices with different desired increases or restric-
tion values 

Index

Stage gain index Point gain index Eigenvector index 
(2 index traits)

1-stage 4-point 2-point

(0 to 130 wk) (0, 42, 86, and 130 wk) (0 and 130 wk)

Restriction type Actual weight Scaled Actual weight Scaled Actual Scaled
weight weight weight weight

Restriction values 1,490 1,000 –2.5, 15.7, –1, 6.28, –2.5, 5.4 –1, 2.16
16.6, 5.4 6.64, 2.16

Selection intensity 0.2895 0.1943 0.3988 0.1605 0.3929 0.1577
ΔL01)/sd2) 0.24223 0.16257 0.25358 0.10135 –0.16690 –0.06658 
ΔL1/sd 0.10498 0.07046 0.06072 0.02357 0.15107 0.06106
ΔL2/sd –0.12171 –0.08168 –0.30193 –0.12026 0.26838 0.10766
ΔL3/sd –0.00995 –0.00668 0.13205 0.05704 –0.18017 –0.07252 
ΔL4/sd 0.13413 0.09002 0.22367 0.08973 –0.20290 –0.08131 
b03) 0.00517 0.00347 0.00284 0.00115 –0.00295 –0.00117 
b1 –6.9  

E–05
–4.62  
E–05

0.00306 0.00133 0.01331 0.00535

b2 4.41 
E–07

2.96 
E–07

–0.01212 –0.00465 

b3 –0.00011 –7.06 
E–05

0.02289 0.01073

b4 3.01 
E–06

2.021 
E–06

–0.01118 –0.00435 

1) ΔL, Difference in Legendre coefficients (after selection – before selection): 0, constant; 1, linear; 2, quadratic; 3, cubic; 4, quartic.
2) sd, standard deviation.
3) b, index weight: 0, constant; 1, linear; 2, quadratic; 3, cubic; 4, quartic.
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stant only. Therefore, the results (Table 6) show that genetic 
gain can be expressed as actual weight gain or as any scaled 
value and that these indices are essentially the same. 

Effects of point gain index selection on body weights 
throughout the fattening process
As we mentioned in the numerical example, the effects of 
the point gain index selection on body weights throughout 
the fattening process are revealed by comparing the point 
gain index with the stage gain index that uses a single stage 
(i.e., the entire 130-week process) provided that the total 
weight gain during the fattening period is the same. The point 
gain index uses target ages of 0, 42, 86, and 130 weeks, with 
respective gains set to –2.5, 15.7, 16.6, and 5.4 kg (Table 3). 
The deviations of the stage gain and point gain indices from 
the growth curve before selection (Table 2) are shown (Figure 
2). As we mentioned earlier regarding the stage gain index, the 
desired gain in body weight is the body weight throughout 
growth after selection less that before selection (Table 2). The 
stage gain index (Figure 2) has no restriction regarding de-
sired gain at specific weeks of age. Therefore, the selection 
intensity was more moderate for the stage gain index (0.29) 
than the point gain index (0.40). 
 The effects of point gain index selection with restriction 
for desired gains at specific ages are clearly shown (Figure 2). 
In the point gain index, the restriction on body weight at 
birth was –2.5 kg, such that body weight was lower for the 
point gain index than for the stage gain index from birth un-
til about 20 weeks of age. Based on the point gain index, the 
desired increases in body weight at 42 and 86 weeks of age 
were 15.7 and 16.6 kg, respectively, such that the point gain 
index yielded a greater body weight than the stage gain index 
from approximately 20 through 95 weeks of age. Thereafter 
the point gain index produced a smaller gain than the stage 
gain index: the magnitude of the desired gain at 130 weeks 
of age (i.e., final week of fattening) was 5.4 kg, which was 
much smaller than the desired gains at 42 weeks (15.7 kg) 
and 86 weeks (16.6 kg). In this way, the effects of point gain 
index selection on body weight throughout the entire fatten-

ing process can easily be grasped by comparing the point gain 
index with the stage gain index in which the weight gain over 
the entire fattening process (i.e., a single stage) was targeted.
 In general, the more severe the restriction imposed, the 
greater the selection intensity required to realize the restric-
tion. For practical reasons, the index with the lowest selection 
intensity should be chosen from among all possible indices 
that satisfy the same desired constraint, because the smaller 
the selection intensity, the greater the likelihood of realizing 
the selection goal. In this study, we showed that the point 
gain, stage gain, and eigenvector indices that we developed 
each provided only a single unique index that satisfies the 
pre-conditions and minimizes the selection intensity. An 
important point is which combination is optimal, i.e., which 
combination incorporates the lowest selection intensity when 
achieving the desired gains. Therefore, the necessary index 
to develop is one that minimizes selection intensity insofar 
as possible to achieve the desired gains at target time points 
during the fattening process and that, in doing so, yields a 
single, unique solution (k+1≥s). In contrast, when k+1<s, 
there are too many restrictions (s) regarding desired gains 
(∆Gs) to satisfy the condition that S∆αL = ∆Gs.
 The procedure developed in this study allows comparing 
different genomic indices to select the most effective growth 
curve under given genetic parameters. On the other hand, 
the influence of errors of parameter estimation on the accu-
racy of the selection index has been investigated by Harris 
[29] and Heidhues [30]. The general conclusions by these re-
searchers were that errors of parameter estimation would affect 
the expected response due to the selection index. Therefore, 
the effect of the difference in reliability of GEBV on selection 
response was investigated. Index coefficients, difference in 
Legendre coefficients (after selection – before selection, ∆αL), 
and selection intensity in reliability of GEBV (0.7,0.6, and 
0.5) are shown in Table 7. The absolute value of index coeffi-
cients increased as reliability of GEBV decreased from 0.7 to 
0.5. Selection intensity increased with decreasing reliability 
of GEBV, since variance of index increases with an increase 
in index coefficients and variance is the square of selection 
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 to the RR coefficients before selection 

is an option for obtaining new growth curve coefficients. How-
ever, the new growth curve needs to be checked to confirm 
that it at least nearly meets the breeder's intention. This veri-
fication is necessary because this approach will not yield the 
desired gains unless the number of desired gains is equal to 
the order of the fitted RR coefficients.
 A restricted selection index can achieve the desired gains 
in body weight for meat animals [32,33]. However, many 
possible growth curves could achieve the desired gains, but 
the effects on body weight throughout the entire fattening 
process will not be apparent unless all genetic correlations 
are known. Therefore, we applied a RR approach to the growth 
curve. As a result, our index approach offers a unique solu-
tion for achieving the desired gains with minimum selection 
intensity, revealing the effects on all body weights through-
out the fattening process. The purpose of this study is not to 
apply RR curve to fattening process [10-13], but this study 
aims to develop selection index to achieve desired weight 
gains at targeted weeks of age during growth process mini-
mizing inbreeding. Non-linear growth curve (Gompertz 
curve) have been applied to estimate breeding value [34,35], 
however, selection procedure for the desired weight gains at 
targeted weeks of age would not be given yet. The index was 
a general approach that is applicable to all species and accom-
modates weight increases at any age of animal or at any stage 
of the fattening process. The developed selection index pro-
cedure of the point gain index or the stage gain index would 
be extended easily to longitudinal data such as growth curve 
in plant and egg production curve.

CONCLUSION

The point gain index we developed can achieve the desired 
weight gain at any given postnatal week of the growing pro-
cess and is an easy-to-use and practical option for improving 
the growth curve. The index was a general approach that is 
applicable to all species and accommodates weight increases 
at any age of animal or at any stage of the fattening process. 
We presented a numerical example to illustrate our approach 
for reducing birth weight and reaching the desired finishing 
weight earlier than with other methods.

Table 7. Index coefficients, difference in Legendre coefficients (after selection – before selection, ΔαL), and selection intensity in reliability of 
genomically enhanced breeding value (0.7, 0.6, and 0.5)

Item Index coefficients ∆αL

Reliability 0.7 0.6 0.5 0.7 0.6 0.5
Constant 0.00284 0.00390 0.00524 17.015 17.102 17.197 
1st order 0.00306 0.00308 0.00343 1.980 1.990 2.002 
2nd order –0.01212 –0.01380 –0.01659 –7.978 –7.861 –7.734 
3rd order 0.02289 0.02709 0.03331 0.815 0.808 0.801 
4th order –0.01118 –0.01233 –0.01449 0.958 0.842 0.716 
Selection intensity 0.399 0.439 0.491 - - -
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Appendix: Estimation of random regression parameters from parameters from Gompertz 841 


growth curve 842 


  843 


The weekly genetic covariance matrix (G) from birth through 130 weeks of age was obtained 844 


by generating random numbers based on the genetic parameters of the Gompertz growth 845 


curve. 846 


 847 


The weekly genetic covariance matrix (G) was transformed as follows; 848 


𝑮 𝝋𝑯𝝋′ 849 


,where H =the genetic covariance matrix of Legendre polynomial coefficients, 850 


𝝋


𝜑 𝑡 𝜑 𝑡 𝜑 𝑡 . . 𝜑 𝑡
𝜑 𝑡 𝜑 𝑡 𝜑 𝑡 . . 𝜑 𝑡


. . . . . . . . . .
𝜑 𝑡 𝜑 𝑡 𝜑 𝑡 . . 𝜑 𝑡


 ,  851 


𝝋 is a 131 𝑘 1  matrix, 𝑡  is the age standardized for the ith specific time in fattening 852 


process and 𝜑𝒋 𝑡  is the jth order of Legendre polynomial (j = 0,..,k) evaluated at age 𝑡  853 


standardized, 854 


𝝋 is defined by Legendre polynomial functions and does not depend on the values in the 855 


matrix G. Therefore, it is possible to estimate H as follows; 856 


𝑯 𝝋 𝟏G 𝝋 𝟏 ′. 857 





