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Comparison of miR-106b, miR-191, and miR-30d  
expression dynamics in milk with regard to  
its composition in Holstein and Ayrshire cows
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Objective: Milk composition varies considerably and depends on paratypical, genetic, and 
epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of 
the key tools of epigenetic control because of their ability to regulate gene expression at the 
post-transcriptional level. We compared the relative expression levels of miR-106b, miR-
191, and miR-30d in milk to demonstrate the relationship between the content of these 
miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle.
Methods: Milk fat, protein, and casein contents were determined in the obtained samples, 
as well as the content of the main fatty acids (g/100 g milk), including: saturated acids, such 
as myristic (C14:0), palmitic (C16:0), and stearic (C18:0) acids; monounsaturated acids, 
including oleic (C18:1) acid; as well as long-, medium- and short-chain, polyunsaturated, 
and trans fatty acids. Real-time stem-loop one-tube reverse transcription polymerase chain 
reaction with TaqMan probes was used to measure the miRNA expression levels.
Results: The miRNA expression levels in milk samples were found to be decreased in the 
first two months in Holstein breed, and in the first four months in Ayrshire breed. Correlation 
analysis did not reveal any dependence between changes in the expression level of miRNA 
and milk fat content, but showed a multidirectional relationship with individual milk fatty 
acids. Positive associations between the expression levels of miR-106b and miR-30d and 
protein and casein content were found in the Ayrshire breed. Receiver operating characteristic 
curve analysis showed that miR-106b and miR-30d expression levels can cause changes in 
fatty acid and protein composition of milk in Ayrshire cows, whereas miR-106b expression 
level determines the fatty acid composition in Holsteins.
Conclusion: The data obtained in this study showed that miR-106b, miR-191, and miR-
30d expression levels in milk samples have peculiarities associated with breed affiliation 
and the lactation period.
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INTRODUCTION

Cattle domestication has led to the development of various breeds with unique genomic 
architecture [1], which is phenotypically expressed not only through physical appearance 
and color [2] variations but also through valuable traits such as milk productivity, and 
especially milk composition [3]. The ratio of milk components can change because of 
certain factors, such as diet and season of the year, but these changes differ among breeds 
[4]. The stage of lactation is another criterion that determines the metabolite composition 
of milk. Milk is produced by epithelial cells of the mammary gland, which under the influ-
ence of both exogenous and endogenous factors undergo numerous physiological changes 
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throughout lactation. Ultimately, these changes determine 
the intensity of milk component synthesis and, hence, milk 
composition [5]. Functional genomics studies based on 
gene network analysis revealed the complexity of molecular 
adaptation of the mammary gland to lactation. This is assumed 
to be determined by changes in the transcriptome of mam-
mary epithelial cells during lactogenesis and galactopoiesis 
[6], whereas the expression level of key candidate genes 
may vary in animals of different breeds [7]. The emergence 
of new technologies (DNA microarrays, genome and tran-
scriptome sequencing, etc.) provides a better understanding 
of mechanisms controlling the regulation of milk produc-
tion. The use of genomic information has increased selection 
efficiency in cattle, although the variability of inherited 
traits is not fully understood [8]. Understanding gene reg-
ulation and interactions at the post-transcriptional level 
can be a useful tool for identifying novel epigenetic markers 
of productive traits. The complex interaction of genetic and 
environmental factors determines epigenomic changes, 
which significantly affect trait expression level [9]. MiRNAs 
are essential epigenetic components that participate in fun-
damental processes, including proliferation, embryonic 
development, tissue differentiation, and apoptosis, and in-
fluence lipogenesis, hematopoiesis, and immunity. As a 
part of the non-coding RNA class, they can regulate up to 
60% of gene expression at the post-transcriptional level by 
binding to complementary RNA molecules, which leads to 
translation repression or mRNA degradation and, thus, to 
changes in cellular protein level in different tissue cells [10]. 
MiRNAs are secreted by body cells and found in all body 
fluids as part of stable protein or lipid complexes [11]. Being 
expressed by mammary epithelial cells, they are involved 
in intracellular communication and signaling pathways at 
the cellular level, thereby determining the functioning of 
the mammary gland itself and ultimately the nutrient ratio 
in milk [12]. Milk as a non-invasive source of miRNAs is an 
excellent target for studying the mammary transcriptome. 
Milk fat-derived miRNAs were reported to accurately map 
the miRNAome of breast tissue [13]. In a recent study [14], 
the stability of human breast milk miRNAs was experi-
mentally confirmed by treating milk samples with RNase, 
a low-pH solution, and a triple freeze-thaw cycle (–20°C). 
Several studies showed that the expression level of miRNA 
in cow milk depends on housing and environmental con-
ditions, feed ration [15,16], age and breed [17], and the 
physiological condition of the udder, including mastitis 
[18]. According to other authors, miRNA expression differs 
not only in lactating and dry cows but also in groups of 
cows with high and low milk fat and protein contents [19]. 
  It is well known that Holstein cattle have a high potential 
for milk productivity, whereas high milk fat content is a dis-
tinctive feature of Ayrshire cattle. Modern populations of 

Ayrshire and Holstein cattle are distinguished by their unique 
genomic architecture, formed as a result of long-term breeding 
and artificial selection [20,21]. In this regard, it is relevant to 
study in detail the contribution of some key milk miRNAs 
as epigenetic regulators of lactopoiesis and galactopoiesis. 
MiRNAs including miR-106b (BTA 25; MI0009724), miR-191 
(BTA 22; MI0005034), and miR-30d (BTA 14; MI0004747), 
are presumably involved in the processes regulating the syn-
thesis of protein-fat components of milk, as shown in other 
studies [22,23]. Overexpression of miR-106b in the mammary 
gland tissues of Holstein cows resulted in downregulation of 
the CDKN1A gene and alteration of protein synthesis path-
ways [24]. Although miR-191 is one of the most prevalent 
miRNAs in bovine mammary gland tissues, its function in 
lipid and protein synthesis remains unclear. However, its 
human homologue regulates transcription factors, chromatin 
remodelers, and cell cycle genes involved in proliferation, 
apoptosis, differentiation, and migration [25]. Furthermore, 
miR-191 was identified as a diagnostic marker for breast 
cancer in women [26]. MiR-30d is a universal miRNA that 
interacts with many target genes and performs various bio-
logical roles. For instance, miR-30d indirectly participates 
in blood glucose level regulation by activating insulin tran-
scription [27]. 
  It is essential to study the expression patterns of miR-
106b, miR-191, and miR-30d in cow milk throughout 
lactation. To accomplish this aim, we conducted a compre-
hensive analysis of the aforementioned miRNA expression 
in the milk of Holstein and Ayrshire cows at different stages 
of lactation, considering milk composition.

MATERIALS AND METHODS

Animal selection
The principles of laboratory animal care were followed, and 
all procedures were conducted according to the ethical 
guidelines of the L.K. Ernst Federal Science Center for Animal 
Husbandry. The protocol was approved by the Commission 
on the Ethics of Animal Experiments of the L.K. Ernst Federal 
Science Center for Animal Husbandry (Protocol Number: 
2020/2) and the Law of the Russian Federation on Veterinary 
Medicine No. 4979-1 (14 May 1993).
  Two groups of Holstein and Ayrshire cows of 10 animals 
each were formed for the study, regarding the calving date. 
Animals were kept on different farms in the same climatic 
zone under similar conditions. Both groups received bal-
anced mono fodder during the study in accordance with 
their physiological status.

Milk sampling
Milk sampling for miRNA extraction was conducted monthly 
during control milking throughout ten months of the first 
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lactation, specifically in the morning. Milk was sampled in 
individual tubes without any preservatives; milk samples 
were immediately cooled (+4°C to +6°C) and transported to 
the laboratory. Samples were then aliquoted in 5 mL portions, 
frozen at –80°C and stored until the use. Broad Spectrum 
Microtabs II preservative was used for analyzing the milk 
composition. It was added to the samples, stored at +4°C, 
and delivered to the laboratory within two days from sam-
pling day. Sample analysis was conducted at the center of 
collective use of scientific equipment of L.K. Ernst Federal 
Research Center for Animal Husbandry using the Combi-
Foss 7 infrared analyzer (Foss A/S, Hillerød, Denmark) and 
included the following parameters: protein (%), fat (%), casein 
(%), and the main fatty acids (g/100 g of milk). The latter 
consisted of saturated fatty acids (SFA), including myristic 
acid (C14:0), palmitic acid (C16:0), stearic acid (C18:0), 
monounsaturated fatty acids (MUFA), including oleic acid 
(C18:1), long-chain fatty acids (LCFA), medium-chain fatty 
acids (MCFA), short-chain fatty acids (SCFA), polyunsatu-
rated fatty acids (PUFA), and trans fatty acids (TFA).

Extraction and quantification of miRNAs by real-time 
reverse transcription polymerase chain reaction
MiRNA samples were obtained from 2 mL of milk using the 
“Total RNA and small RNA isolation kit from “Lira” reagent” 
(Biolabmix Ltd., Novosibirsk, Russian Federation). RNA 
concentration and purity (A260/280 ratio) were evaluated 
using the NanoDrop spectrophotometer (Thermo Fisher 
Scientific Inc., Waltham, MA, USA). On average, the con-
centration of isolated RNA was 50 to 180 ng/μL. MiRNA 
expression levels were measured using real-time stem-loop 
one-tube real-time reverse transcription polymerase chain 
reaction (RT-qPCR), proposed and described previously by 
Varkonyi-Gasic et al [28]. For reverse transcription (RT), we 
used stem-loop primers and a TaqMan probe, similar to 
UPL-21 (F. Hoffmann-La Roche Ltd., Basel, Switzerland), 
which was developed as part of this study. The RT reaction 
was performed using the “Reverse transcriptase M-MuLV-
RH” kit (Biolabmix Ltd., Russian Federation) in a volume of 
10 µL. Then, 2 μL of the obtained miRNA solution was used 

as a matrix in the following regime: 30 min 16°C; 45 cycles of 
30 s 30°C; 30 s 42°C; 1 s 50°C; and the final step of 5 min 
85°C. The resulting cDNA-containing solution was used as a 
matrix for real-time qPCR. The reaction was performed in a 
volume of 20 μL, and the amplification of PCR products was 
analyzed using QuantStudio 5 Real Time PCR System (Thermo 
Fisher Scientific Inc., USA). The PCR mix consisted of 2× 
BioMaster HS-qPCR reaction mix (Biolabmix Ltd., Russian 
Federation), 0.2 μmol of forward and reverse primers, 0.1 
μmol TaqMan probe and 2 μL of RT-PCR products. Primers 
were designed using “miRNA Primer Design Tool” program 
(https://genomics.dote.hu:8080/ mirnadesigntool/processor) 
and synthesized at ICBFM SB RAS (Novosibirsk, Russian 
Federation). The amplification protocol was as follows: 10 
min 95°C; 40 cycles of 15 s 95°C; 25 s 60°C. The amplification 
quality was evaluated by the amplification curve distribution 
depending on the initial matrix concentration. For each 
sample RT-qPCR reactions were performed in 3 repeats. A 
series of dilutions from 10–1 to 10–8 ng/μL of synthetic miRNA 
bta-miR-191 (IHBFM SB RAS, Novosibirsk, Russian Federa-
tion) were used as reference samples for calibration plotting. 
  The nucleotide sequences of the primers and TaqMan probe 
are presented in Table 1.

Statistical analysis
The obtained results were processed using Statistica.10 
(StatSoft, Inc., Tulsa, OK, USA) and GraphPad Prism 12.0 
(GraphPad Software Inc., La Jolla, CA, USA) application 
packages. Quantitative data were tested for normality using 
the Kolmogorov-Smirnov criterion. The statistical signifi-
cance of the parameter difference between groups was 
assessed using nonparametric analysis methods, specifically 
the Kruskal-Wallis H-criterion (H-test) when comparing 
several groups, and the Mann-Whitney criterion when com-
paring two groups. Differences were considered statistically 
significant if p≤0.05 (after adjusting for the number of com-
parisons). The data were then analyzed using two-way analysis 
of variance (ANOVA) to test the main effects of the factors 
"Farm" (combination of breed, housing system, and feed 
ration factors) and "month of lactation" on milk composition 

Table 1. Nucleotide sequence of the primers and TaqMan probe used for real-time reverse transcription polymerase chain reaction

Oligo name Primer sequence 

mimetic miR-191 CAACGGAAUCCCAAAAGCAGCUG
Universal reverse primer GTGCAGGGTCCGAGGT
TaqMan probe [FAM]TGGCTCTGGTGCGAATAC[BHQ1]
miR-191 forward primer CAACGGAAUCCCAAAAGCAGCUG
miR-191 Stem-loop primer GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACCAGCTG
miR-106b forward primer UAAAGUGCUGACAGUGCAGAU
miR-106b Stem-loop primer GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACATCTGC
miR-30d forward primer UGUAAACAUCCCCGACUGGAAGCU
miR-30d Stem-loop primer GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAAC AGCTTC
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(Table 2).
  “Plot Tukey” plots were constructed to visualize the rela-
tive expression level of microRNAs, using GraphPad Prism 
12.0 software. The logarithm function for the y axis (log10) 
was applied to improve the distribution of trait values. 
Spearman’s coefficient was used for correlation analysis and 
construction of the heatmap in GraphPad Prism 12.0 software. 
The critical significance level was set to p<0.05. Receiver oper-
ating characteristic (ROC) curves of miRNA data were 
analyzed using GraphPad Prism 12. In all cases, the critical 
significance level was also set to p<0.05.
  Principal components and classification analysis (PCC) 
based on the covariance matrix was performed on normalized 
data using Statistica.10 software (StatSoft Inc., USA). Changes 
in the expression of individual miRNAs were calculated using 
the 2dCt (delta Cycle threshold) method [29]. Target genes 
were searched and "Network" (multi-association network 
integration) plotting was performed in miRWalk database 
[30] (https://mirwalk.umm.uni-heidelberg.de/). Annotation 
of signaling pathways for the identified target genes was per-
formed using the Kyoto encyclopedia of genes and genomes 
(KEGG) genomic browser (https://www.genome.jp/kegg/). 
Enriched signaling pathways for the identified target genes 
were annotated and visualization of the results was performed 
using ShinyGo 0.77 (https://bioinformatics.sdstate.edu/go/).

RESULTS

Phenotype analysis

As a result, milk composition data for ten months of lacta-
tion were obtained in both groups of animals (Figure 1). 
Milk of Ayrshire cows was found to be higher in fat (p<0.001), 
casein (p<0.05) (Figure 1A) and all fatty acids (p<0.05) 
(Figure 1B) compared to Holsteins.
  PCC analysis for milk traits demonstrated that the first 
component explained 91.62% of the total phenotypic vari-
ability for all 14 traits for the Holstein breed and 89.32% for 
the Ayrshire breed (Figure 2). For both breeds, the fat trait 
was isolated and demonstrated high negative loading for the 
first component (–1.359 for Holstein and –1.070 for Ayrshire). 
SCFA and TFA had low negative loadings (–0.130 and –0.023 
for Holstein, and –0.151 and –0.013 for Ayrshire, respectively). 
Notably, the protein and casein traits diverged in the Ayrshire 
group, with a slightly positive loading for protein (0.003) 
and a slightly negative loading for casein (–0.027). For the 
second component, both traits demonstrated high negative 
loadings (protein –0.317 and casein –0.257), indicating their 
divergence relative to the fatty acid components.
  Correlation matrix analysis showed (Figure 3A, 3B) that 
both breeds had similar correlations between milk fat content 
and fatty acid composition, as well as between individual 
fatty acids (at least p<0.05). However, only Holstein cows 
showed a positive correlation of protein and casein contents 
with fat content (r = 0.768 and r = 0.789, respectively, at p< 
0.001) and fatty acids in milk (at least p<0.05), compared to 
Ayrshire cows. For the Ayrshire breed, a negative correlation 
was found between milk protein and casein with C18:0 (r = 
–0.462 and r = –0.409 respectively, p<0.05) and a positive 

Table 2. The effect of paratypic factors on phenotypic variability of cow's milk composition

Constituents

Factors

Farm Month of lactation Farm+month of lactation

R2 F p-value R2 F p-value R2 F p-value

Fat 0.352 93.534 0 0.133 2,785 0.005 0.572 10.853 0
Protein 0.005 0.908 0.342 0.441 14,349 0 0.506 8.301 0
Casein 0.012 2.097 0.149 0.453 15,074 0 0.533 9.233 0
C14:0 0.301 73.979 0 0.262 6,482 0 0.642 14.522 0
C16:0 0.344 90.273 0 0.156 3,364 0.001 0.562 10.407 0
C18:0 0.311 77.713 0 0.115 2,357 0.016 0.537 9.39 0
C18:1 0.186 39.402 0 0.082 1,622 0.113 0.37 4.755 0
LCFA 0.204 44.169 0 0.086 1,714 0.089 0.403 5.463 0
MCFA 0.338 87.969 0 0.19 4,277 0 0.606 12.441 0
MUFA 0.168 34.783 0 0.096 1,94 0.05 0.352 4.394 0
PUFA 0.203 43.87 0 0.033 0.622 0.777 0.347 4.298 0
SFA 0.394 111.69 0 0.127 2,659 0.007 0.611 12.716 0
SCFA 0.45 140.978 0 0.075 1,475 0.161 0.638 14.305 0
TFA 0.075 14.012 0 0.109 2,224 0.023 0.253 2.746 0

R2, coefficient of determination; F, Fisher's criterion; p, significance level.
The factor "farm" had no significant effect on the content of protein and casein in milk, the factor "month of lactation" - on the content of C18:1, LCFA, 
PUFA, and SCFA. At the same time, the combined effect of the factors "farm+month of lactation" had a significant effect on all analyzed milk parameters.
LCFA, long-chain fatty acid; MCFA, medium-chain fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty 
acids; SCFA, short-chain fatty acids; TFA, trans fatty acids.

https://mirwalk.umm.uni-heidelberg.de/
https://www.genome.jp/kegg
https://bioinformatics.sdstate.edu/go/
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correlation between casein and C14:0 (r = 0.274, p<0.05). 
Thus, correlation analysis showed significant differences in 
the interdependency of milk protein and casein with the 
content of fat and fatty acids in both breeds.
  Table 3 demonstrates the variation in milk constituent 
values during lactation for the Holstein and Ayrshire breeds. 
In Holstein cattle, all milk constituents exhibited high vari-
ability, except PUFA (p = 0.0515). Milk composition in the 
Ayrshire group was relatively stable during the observation 
period. Significant variability was found only for constitu-

ents such as protein, casein, C14:0, C18:0, and TFA (at least 
p<0.05).

Analysis of miR-106b, miR-191, and miR-30d 
expression levels
The expression level of miR-106b in milk samples of Holstein 
cows showed a wave-like pattern of variation throughout the 
observation period (Figure 4). A low expression level was 
detected at the beginning of the first two months of lactation. 
It increased significantly by the third and fourth months (p< 

Figure 1. Milk characteristics of the studied cow groups by total values for ten months of lactation (Median; with 95% CI). (A) Fat, protein, casein; 
*** p<0.001; * p<0.05. (B) C14:0, C16:0, C18:0, C18:1, LCFA, MCFA, MUFA, PUFA, SFA, SCFA, TFA (p<0.05 for all constituents). LCFA, long-chain fat-
ty acid; MCFA, medium-chain fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids; SCFA, 
short-chain fatty acids; TFA, trans fatty acids.

Figure 2. Graphical visualization of covariance between milk components based on principal components and classification analysis (PCC):        
(A) Holstein breed; (B) Ayrshire breed. LCFA, long-chain fatty acid; MCFA, medium-chain fatty acids; MUFA, monounsaturated fatty acids; PUFA, 
polyunsaturated fatty acids; SFA, saturated fatty acids; SCFA, short-chain fatty acids; TFA, trans fatty acids.
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0.05 to 0.001) and decreased again by the seventh and ninth 
months with a subsequent increase by the end of lactation 
(p<0.05 to 0.001). In the milk of Ayrshire cows, miR-106b 
had a low expression level in the first four months with an 
increase from five to seven months and reaching maximum 
values in the late period of lactation (p<0.05 to 0.001).
  For miR-191 in Holstein cows, a statistically significant 
increase in expression was found only by the third month of 
lactation, as well as a tendency to higher expression values at 
the fourth and fifth month, compared to the second month. 
In the milk of Ayrshire cows, statistically significant increases 
in miR-191 were found at the fifth and sixth months of lac-
tation, compared to first month (p<0.05 to 0.001) and at 5 to 
7 months compared to fourth month (p<0.05 to 0.001) (Figure 
5). In general, the obtained values of miR-191 relative ex-
pression level were significantly lower for Ayrshire cows, 
than for Holstein cows.
  The expression level of miR-30d in Holstein cows was low 
at the beginning of lactation, with its subsequent increase 
starting from three months and reaching its maximum by 5 
to 6 months, which corresponds to mid-lactation (p<0.05 to 
0.001). As for Ayrshire cows, miR-30d expression was char-
acterized by low values in the first four months of lactation, 
a significant increase at 5 to 6 months with a smooth subse-
quent decrease, but not reaching the level of 1 to 4 months 
(p<0.05 to 0.001) (Figure 6). With certain dynamics of miR-
30d expression level during the observation period, the values 
were lower in milk samples from Ayrshire cows compared 
to Holsteins.

Correlation analysis
Correlation analysis of the Holstein breed data showed a 
positive correlation between the expression levels of miRNAs 
(miR-106b – miR-191, r = 0.799; miR-106b – miR-30d, r = 
0.752; miR-30d – miR-191, r = 0.841; all at p<0.05). Never-

theless, associative relationships of analyzed miRNAs with 
milk fat components had their own peculiarities (Table 4). A 
statistically significant negative correlation was found be-
tween miR-106b expression level and the content of C18:1 
(p<0.05), SFA (p<0.05), SCFA (p<0.05), and showed a similar 
tendency with fat, C18:0 (p = 0.059), LCFA (p = 0.055), and 
MCFA (p = 0.071). The expression level of miR-191 was 
negatively correlated with C18:0 (p<0.01), C18:1 (p<0.05), 
and LCFA (p<0.05). A negative correlation was also found 
for miR-30d expression level with C18:0 content (p<0.01), 
and, with a tendency towards reliability with C18:1 (p = 
0.063) and LCFA (p = 0.070) (Table 4).
  In Ayrshire cattle, correlation analysis revealed a positive 
correlation between miR-106b expression level and protein 
(p<0.001), casein (p<0.001), and a negative correlation with 
C18:0 (p<0.01). Similar results were obtained for miR-30d, 
whose expression level was positively correlated with protein 
(p<0.001) and casein (p<0.001) and negatively correlated 
with C18:0 (p<0.05). A multidirectional relationship with 
TFA level (p<0.01) was shown for miR-191 (Table 4). Similar 
to Holstein cattle, these miRNAs had a unidirectional posi-
tive correlation among themselves (miR-106b – miR-191, r 
= 0.446; miR-106b – miR-30d, r = 0.369; miR-30d – miR-191, 
r = 0.493; all at p<0.05).
  For all miRNAs that showed significant correlations with 
milk constituents, ROC curves were created (Figures 7; 8). 
The purpose of analyzing the ROC curves was to determine 
the extent to which miRNA expression levels may have a 
prognostic effect for the milk constituents. We found that for 
Holstein cows’ milk, miR-106b had high predictive values 
(AUC = 1) for C18:1, SFA and SCFA content; miR-191 had 
moderate to low predictive value (0.5<AUC<0.7) for C18:0, 
C18:1, and LCFA content, whereas miR-30d had low predic-
tive value for C18:0 (0.5<AUC<0.6) (Figure 7). For Ayrshire 
cows’ milk, miR-106b and miR-30d had high predictive values 

Figure 3. Correlation matrix for analyzed milk traits in cows: (A) Holstein breed; (B) Ayrshire breed.
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Table 3. Dynamics of the main milk constituents of Holstein and Ayrshire cattle during lactation

Constituents
Lactation month

p-value
1 2 3 4 5 6 7 8 9 10

Holstein breed
Fat (%) Mean 3.11 2.86 2.60 3.64 3.84 4.94 4.36 4.14 4.42 4.57 < 0.001

SD 0.34 0.41 0.49 0.69 0.81 1.95 0.59 0.71 0.46 0.59
Protein (%) Mean 2.84 2.49 2.73 2.97 3.27 3.31 3.44 3.46 3.56 3.45 < 0.001

SD 0.09 0.21 0.17 0.20 0.29 0.38 0.29 0.31 0.27 0.33
Casein (%) Mean 2.35 2.06 2.28 2.50 2.75 2.79 2.90 2.91 3.01 2.91 < 0.001

SD 0.09 0.18 0.13 0.16 0.25 0.31 0.24 0.26 0.21 0.27
C14:0 (g/100 g) Mean 0.26 0.25 0.32 0.36 0.40 0.51 0.49 0.47 0.50 0.48 < 0.001

SD 0.06 0.04 0.03 0.07 0.07 0.09 0.06 0.09 0.05 0.05
C16:0 (g/100 g) Mean 0.76 0.84 0.81 0.89 0.96 1.36 1.19 1.09 1.17 1.20 < 0.001

SD 0.10 0.10 0.11 0.20 0.16 0.41 0.14 0.21 0.12 0.13
C18:0 (g/100 g) Mean 0.34 0.31 0.18 0.30 0.27 0.36 0.25 0.26 0.29 0.34 < 0.05

SD 0.12 0.08 0.07 0.06 0.06 0.20 0.04 0.04 0.04 0.05
C18:1 (g/100 g) Mean 1.02 0.93 0.66 1.02 1.04 1.30 1.06 1.03 1.09 1.24 < 0.05

SD 0.30 0.22 0.17 0.19 0.22 0.78 0.17 0.17 0.10 0.21
LCFA (g/100 g) Mean 1.24 1.19 0.77 1.33 1.28 1.66 1.32 1.28 1.37 1.60 < 0.001

SD 0.42 0.30 0.27 0.28 0.31 0.97 0.21 0.20 0.13 0.21
MCFA (g/100 g) Mean 1.15 1.10 1.12 1.33 1.48 2.05 1.86 1.74 1.86 1.84 < 0.001

SD 0.18 0.14 0.17 0.30 0.27 0.58 0.22 0.36 0.20 0.21
MUFA (g/100 g) Mean 0.92 0.85 0.65 0.97 0.98 1.23 0.97 0.96 1.01 1.17 < 0.05

SD 0.29 0.20 0.18 0.17 0.21 0.76 0.15 0.15 0.08 0.20
PUFA (g/100 g) Mean 0.10 0.10 0.08 0.11 0.11 0.11 0.10 0.11 0.11 0.12 0.0512

SD 0.02 0.01 0.02 0.01 0.02 0.06 0.02 0.01 0.02 0.03
SFA (g/100 g) Mean 2.03 1.89 1.77 2.32 2.51 3.30 2.99 2.80 3.02 2.99 < 0.001

SD 0.19 0.25 0.31 0.49 0.53 1.04 0.41 0.53 0.34 0.35
SCFA (g/100 g) Mean 0.43 0.36 0.33 0.46 0.51 0.61 0.60 0.56 0.61 0.57 < 0.001

SD 0.05 0.06 0.07 0.11 0.13 0.17 0.10 0.11 0.10 0.11
TFA (g/100 g) Mean 0.06 0.04 0.05 0.06 0.07 0.05 0.04 0.05 0.05 0.06 < 0.05

SD 0.02 0.02 0.03 0.02 0.02 0.06 0.03 0.02 0.02 0.02
Ayrshire breed

Fat (%) Mean 5.24 5.22 6.06 6.20 6.02 6.36 5.32 5.07 5.20 5.58 0.0973
SD 0.49 1.15 1.25 0.86 1.15 1.39 0.94 1.31 0.55 0.71

Protein (%) Mean 3.12 2.83 3.00 3.19 3.38 3.36 3.43 3.41 3.32 3.41 < 0.001
SD 0.28 0.18 0.25 0.24 0.23 0.40 0.27 0.21 0.20 0.27

Casein (%) Mean 2.62 2.39 2.57 2.72 2.86 2.88 2.90 2.89 2.80 2.88 < 0.001
SD 0.20 0.14 0.22 0.20 0.17 0.29 0.23 0.16 0.16 0.21

C14:0 (g/100 g) Mean 0.44 0.48 0.58 0.63 0.63 0.68 0.55 0.51 0.52 0.57 < 0.05
SD 0.06 0.10 0.14 0.10 0.14 0.15 0.11 0.14 0.06 0.08

C16:0 (g/100 g) Mean 1.32 1.40 1.60 1.69 1.64 1.80 1.45 1.36 1.36 1.49 0.0817
SD 0.20 0.31 0.38 0.29 0.40 0.48 0.32 0.42 0.17 0.25

C18:0 (g/100 g) Mean 0.57 0.49 0.50 0.45 0.43 0.44 0.36 0.37 0.37 0.41 < 0.001
SD 0.07 0.11 0.07 0.05 0.06 0.11 0.05 0.09 0.04 0.05

C18:1 (g/100 g) Mean 1.51 1.35 1.53 1.49 1.42 1.46 1.31 1.29 1.38 1.41 0.599
SD 0.17 0.27 0.36 0.19 0.20 0.27 0.19 0.32 0.14 0.13

LCFA (g/100 g) Mean 1.91 1.72 2.00 1.92 1.82 1.87 1.64 1.61 1.76 1.80 0.3354
SD 0.21 0.39 0.39 0.23 0.26 0.35 0.23 0.42 0.17 0.17

MCFA (g/100 g) Mean 1.94 2.02 2.32 2.49 2.47 2.71 2.23 2.09 2.07 2.24 0.0292
SD 0.24 0.41 0.53 0.42 0.56 0.61 0.46 0.54 0.24 0.34

MUFA (g/100 g) Mean 1.38 1.22 1.44 1.41 1.34 1.39 1.21 1.21 1.32 1.38 0.4803
SD 0.17 0.27 0.36 0.19 0.20 0.29 0.18 0.33 0.13 0.14

PUFA (g/100 g) Mean 0.15 0.13 0.15 0.13 0.13 0.13 0.12 0.12 0.13 0.14 0.0858
SD 0.02 0.03 0.03 0.02 0.01 0.02 0.02 0.03 0.01 0.02

SFA (g/100 g) Mean 3.60 3.59 4.08 4.26 4.16 4.44 3.65 3.40 3.44 3.71 0.0816
SD 0.44 0.77 0.85 0.64 0.88 1.04 0.73 0.92 0.40 0.52

SCFA (g/100 g) Mean 0.76 0.74 0.82 0.85 0.83 0.87 0.72 0.67 0.66 0.72 0.0665
SD 0.08 0.16 0.17 0.13 0.17 0.20 0.15 0.18 0.09 0.10

TFA (g/100 g) Mean 0.10 0.06 0.11 0.08 0.07 0.06 0.05 0.07 0.06 0.09 < 0.05
SD 0.03 0.03 0.05 0.03 0.02 0.03 0.02 0.05 0.01 0.03

SD, standard deviation; LCFA, long-chain fatty acid; MCFA, medium-chain fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty 
acids; SFA, saturated fatty acids; SCFA, short-chain fatty acids; TFA, trans fatty acids.
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(AUC = 1) for protein, casein and C18:0 content, while miR-
191 showed low values (0.5<AUC<0.6) for TFA content (Figure 
8).
  Target genes of the investigated miRNAs were searched 
for in the miRWalk database (Figure 9). A total of 1,531 genes 
were identified, 5 of which were localized in the central 
module and were common target genes for all three miRNAs 
(TAOK1, FSD1L, PPARGC1B, PPP1R16B, CLMN). A total of 
15 signaling pathways were predicted for TAOK1, PPARGC1B, 
PPP1R16B, and CLMN genes (Figure 10) with the exception 
of the FSD1L gene. The biological significance of miRNAs 
was assessed by annotating the most important reactome 

pathways in the miRWalk database (Table 5). A total of 97 
pathways was identified for miR-106b, 41 pathways for miR-
191, and 61 pathways for miR-30d. For all three miRNAs, 
involvement in the pathways of lipid and protein metabolism 
was observed, whereas only miR-106b was involved in the 
pathways of fatty acid metabolism, and amino acids and 
their derivatives metabolism.

DISCUSSION

Effective breeding of dairy cattle requires considering the 
peculiarities of milk composition in different breeds. Milk 

Figure 4. Dynamics of miR-106b relative expression level in milk samples of (A) Holstein and (B) Ayrshire cows during lactation. KW-H, 
Kruskal-Wallis H-test.

Figure 5. Dynamics of miR-191 relative expression level in milk samples of (A) Holstein and (B) Ayrshire cows during lactation. KW-H, 
Kruskal-Wallis H-test.
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composition, according to Schwendel et al [31], depends on 
a variety of paratypical and genetic factors, so the determi-
nation of paratypical factors is of great practical importance 
for industrial production. In addition, breed and housing 
system (including feed ration) constitute the minimum set 
of factors to be considered when comparing milk samples. 
Therefore, the statistical analysis takes into account a com-
plex factor that includes both breed and housing system. 
Breed can be a decisive factor that largely accounts for differ-
ences between housing systems [32]. Although we obtained 
differences between cow groups in protein and casein con-
tent, the "farm" factor did not significantly affect the content 
of these components in milk. This result, apparently, can be 

explained by the fact that both farms provided conditions 
sufficient for the same manifestation of the studied traits, as 
well as by the fact that cows were at the same stage of lactation 
and received a balanced mono fodder in accordance with 
their physiological status. As our data show (Table 3), the 
content of protein-fat constituents of Holstein cows’ milk 
changed significantly during 10 months of lactation, and 
only the level of PUFA and TFA remained relatively stable. 
In Ayrshire cows, only the values of milk protein, casein, 
C14:0, C18:0, and TFA content significantly changed (at 
least at p<0.05). In general, both breeds showed an increase 
in the content of all investigated milk constituents until late 
lactation (month 7 to 8), which is probably due to physio-

Table 4. Correlations of miR-106b, miR-191, and miR-30d relative expression levels with milk constituents of the Holstein and Ayrshire breeds

Constituents
Holstein breed Ayrshire breed

miR-106b miR-191 miR-30d miR-106b miR-191 miR-30d

Fat (%) –0.205 –0.121 –0.049 0.033 0.064 0.031
Protein (%) –0.062 0.097 0.132 0.343*** 0.137 0.411***
Casein (%) –0.058 0.114 0.147 0.351*** 0.154 0.424***
C14:0 (g/100 g) –0.1 0.055 0.105 0.159 0.15 0.13
C16:0 (g/100 g) –0.173 –0.062 –0.015 0.032 0.096 0.019
C18:0 (g/100 g) –0.201 –0.270** –0.289** –0.321** –0.136 –0.250*
C18:1 (g/100 g) –0.219* –0.243* –0.198 –0.023 –0.043 –0.003
LCFA (g/100 g) –0.204 –0.219* –0.193 –0.032 –0.044 –0.019
MCFA (g/100 g) –0.192 –0.061 –0.002 0.084 0.114 0.085
MUFA (g/100 g) –0.165 –0.18 –0.141 0.036 –0.051 0.026
PUFA (g/100 g) –0.036 0.031 0.059 –0.12 –0.143 –0.064
SFA (г/100 г) –0.225 * –0.119 –0.049 0.008 0.076 0.027
SCFA (г/100 г) –0.248 * –0.14 –0.065 –0.075 0.024 –0.011
TFA (г/100 г) 0.115 0.128 0.084 –0.09 –0.301** –0.127

LCFA, long-chain fatty acid; MCFA, medium-chain fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty 
acids; SCFA, short-chain fatty acids; TFA, trans fatty acids.
* p < 0.05, ** p < 0.01, *** p < 0.001.

Figure 6. Dynamics of miR-30d relative expression levels in milk samples from (A) Holstein and (B) Ayrshire cows during lactation. KW-H, 
Kruskal-Wallis H-test.
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logical changes caused by late lactation and decreased milk 
yield. ANOVA analysis revealed that the factor "month of 
lactation" had no significant effect on C18:1, LCFA, PUFA, 
and SCFA content in milk of both breeds during the first 
lactation (Table 2). The combined effect of the two factors 
"farm+month of lactation" was significant for all analyzed 
milk constituents in both breeds.
  The milk composition characteristics of Holstein and 
Ayrshire cattle may be defined by differences in their genomic 
architecture [21]. This factor determines the presence of 
different sets of candidate genes, which are phenotypically 
expressed through milk traits [33]. Higher fat, protein and 
casein content in milk, compared to Holstein cows, is a 
specific breed trait of Ayrshire cattle (p<0.01 to 0.001) [34]. 
Similar interbreed differences were observed in our study, 
where milk from Ayrshire cows contained on average 1.82% 
more fat (p<0.001), 0.06% more protein and 0.08% more 
casein (p<0.05). Significant differences in milk fat content 
appear to cause differences in fatty acid content as well 
(p<0.001). PCC analysis for both breeds showed clustering 
of fatty acids with high correlation coefficients (p<0.05 to 
0.001). For the Ayrshire breed, PCC analysis demonstrated 
clustering of protein and casein traits relative to fat and fatty 

acids, with no significant correlations between these traits. 
For Holstein cows, a unidirectional correlation between 
protein, casein, and fat components of milk was established. 
The identified differences in the ratio of protein-fat compo-
nents in these breeds presumably determine the technological 
properties of milk [34].
  The results obtained in this research, based on the real-
time stem-loop RT-qPCR data, revealed different expression 
patterns of miR-106b, miR-191, and miR-30d in milk samples 
during lactation in Ayrshire and Holstein cows. Against the 
background of considerable fluctuations in protein-fat com-
ponents (p<0.05 to 0.001), except for PUFA, the expression 
levels of miR-106b, miR-191, and miR-30d in milk samples of 
Holstein cows were reduced in the first two months, whereas 
in Ayrshire cows they were reduced by the fourth month. In 
contrast, the milk composition of the latter was relatively 
stable throughout lactation, except for protein, casein, C14:0, 
C18:0, and TFA (at least p<0.05).
  Correlation analysis demonstrated that both breeds ex-
hibited positive relationships between the expression levels 
of miR-106b, miR-191, and miR-30d with each other, while 
displaying negative correlations with several fatty acids, which 
is consistent with the generally accepted statement that miRNA 

Figure 7. Receiver operating characteristic (ROC) curves obtained from the most efficient microRNA predictor for several milk constituents of 
Holstein cows. (A) for miR-106b; (B) for miR-191; (C) for miR-30d. AUC, area under the curve.
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Figure 8. Receiver operating characteristic (ROC) curves obtained from the most efficient microRNA predictor for several milk constituents of 
Ayrshire cows. (A) for miR-106b; (B) for miR-191; (C) for miR-30d. AUC, area under the curve.

is a negative post-translational regulator. Moreover, among 
the components characterizing milk fat composition, only 
C18:1, C18:0, and LCFA were negatively correlated with 
each of the three miRNAs in milk from Holstein cows. The 
Ayrshire breed also exhibited negative correlations between 
milk fat components and miRNAs, including miR-106b and 
miR-30d with C18:0, and miR-191 with TFA, which was 
absent in milk samples from Holstein cows. The Ayrshire 
breed specificity was the positive correlation of miR-106b 
and miR-30d with milk protein components. According to 
the literature, miRNAs do not always act as negative post-
translational regulators. Previously, while studying the 
functional role of 11 miRNAs in the processes of milk fat 
synthesis regulation in epithelial cells of the goat mammary 
gland, it was found that increased expression of three miRNAs 
(miR-23a, miR-103, and miR-200a) led to activation of tran-
scription and translation of their target genes [35]. 
  The study of miRNAs is important not only for under-
standing galactopoiesis, but also for human health. Fatty 
acids (FA) associated with the expression of the studied 
miRNAs are important for healthy human diet. Stearic acid 
(C18:0) exhibits a neutral or beneficial effect on blood cho-

lesterol levels. It can also be desaturated to oleic acid that, in 
turn, is associated with lower risk of cardiovascular disease, 
diabetes, and obesity, as it can improve the lipid profile, insulin 
sensitivity, and inflammatory markers [36].
  SCFA can influence the gut-brain axis, which is the bidi-
rectional communication between the gastrointestinal tract 
and the central nervous system, by affecting the production 
and release of neurotransmitters, hormones, and cytokines. 
SCFA can also modulate the energy balance, glucose homeo-
stasis, lipid metabolism, and immune function by activating 
specific receptors, such as G-protein coupled receptors 
(GPR41, GPR43, and GPR109A) and free fatty acid receptors 
(FFAR2 and FFAR3), or by inhibiting histone deacetylases 
[37].
  TFA have been associated with increased risk of cardio-
vascular disease, diabetes, obesity, and cancer, as they can 
adversely affect the lipid profile, insulin resistance, inflam-
mation, and oxidative stress [38]. However, the effects of 
TFA may vary depending on their type and dose. Industrial 
TFA (iTFA), on the other hand, have been shown to have 
more detrimental effects on health, compared to ruminant 
TFA (rTFA), as they can increase the levels of LDL choles-
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terol, triglycerides, and lipoprotein(a), decrease the levels of 
HDL cholesterol, and impair the endothelial function [39].
  SFA can also influence the gut-brain axis, energy balance, 
glucose homeostasis, lipid metabolism, and the immune 
function, depending on their chain length and concentration 
[40].
  Cow’s milk protein is a complex mixture of bioactive 
peptides and proteins, which can modulate various physio-
logical systems in humans, such as the immune, cardiovascular, 
gastrointestinal, and nervous systems [41]. Casein, which 
constitutes about 80% of the total protein content of cow’s 
milk, influences the physical properties of milk and dairy 

products, such as viscosity, stability, and texture, which are 
relevant for processing and storage of dairy products [42].
  Therefore, predicting the component composition of 
cow's milk is crucial for enhancing the quality of human nu-
trition. ROC curves data suggest that miRNAs can be used 
as a prognostic marker in the early prediction of cow’s milk 
composition. Thus, in our study, miR-106b had high predic-
tive values for C18:1, SFA, and SCFA (AUC = 1) in Holstein 
cows, and for protein, casein, and C18:0 (AUC = 1) in Ayr-
shire cows. In contrast, miR-30d had high predictive values 
(AUC = 1) for protein, casein and C18:0 only in Ayrshire 
cows. In the presence of some reliable correlations in both cow 

Figure 9. MiRNAs and all their target genes, including "central module" genes.

Figure 10. Enriched signaling pathways for miR-106b, miR-191 miR-30d "central module" target genes.
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groups, miR-191 showed low predictive value, and therefore 
cannot be recommended as a predictive marker of protein-fat 
composition of milk.
  The miRNAs’ biological features, specifically their ability 
to target dozens of genes, suggest their involvement in many 
signaling pathways. Understanding the mechanisms of ge-
netic and epigenetic regulation of processes affecting the 
synthesis of milk components may improve milk productivity 
in cows. More than 6,000 genes regulate milk synthesis pro-
cesses, and expression of these genes is observed in both 
mammary gland tissues and other types of tissues [43].
  In our study, 1,531 target genes involved in nearly 200 re-
actome pathways were identified for miR-106b, miR-191, and 
miR-30d (Table 5). The target gene network plot identified a 
cluster of 5 genes that were targets for all miRNAs analyzed 
in the study, i.e. TAOK1, FSD1L, PPARGC1B, PPP1R16B, 
and CLMN.
  The TAOK1 gene, serine/threonine-protein kinase TAO1, 
is a MAP3K protein kinase that, through regulation of the 
mitogen-activated protein kinase pathway, modulates a sig-
nificant number of cellular processes. TAOK1 was previously 

identified as one of the functional candidate genes for immu-
noglobulin G (IgG) and IgM immunoglobulin content in 
the colostrum and serum of Holstein cows [44], confirming 
its involvement in the synthesis of milk components.
  The FSD1L gene, fibronectin type III and SPRY domain-
containing protein 1, encodes type 2 cystatins, members of 
the cystatin family of intracellular and extracellular protease 
inhibitors. The function of this gene is poorly understood; 
however, in a study by Tahir et al [45], a single nucleotide 
polymorphism (SNP) located near the genomic region com-
prising the FSD1L gene (BTA8) was associated with heifer 
fertility traits, which are known to be negatively correlated 
with cow milk production traits.
  The PPARGC1B gene, peroxisome proliferator-activated 
receptor gamma coactivator 1-beta isoform X2, is known to 
be involved in the Insulin resistance biological pathway 
(bta04931), as well as to regulate glucose homeostasis and 
mitochondrial biogenesis. Its participation in the regulation 
of milk fat synthesis was previously confirmed [46]. Earlier 
in a GWAS study, the PPARGC1B gene was identified as sig-
nificant for milk production traits in Sahiwal-Tharparkar 

Table 5. MiRNAs and their reactome pathways and predicted target-genes

miRNAs
Total number 
of reactome 

pathways

Reactome pathways, 
associated with milk 

composition

microRNA target 
gene Associated genes

miR-106b 97 Metabolism of lipids 
BTA-556833 

25,360,233,5271

GPAM MVK, DEGS1, ACSL6, GBA, MGCL, SELENOI, PON3, BTPS2, 
ORMDL3, LPGAT1, SRD5A1, SACM1L, MTMR2, ACER3, 
RAB14, ASB12, PCYT1B, PLEKHA8, ACSL3, MORC2, PHYH, 
PIK3CA, CSNK2A1, M6PR

R-BTA-392499 
Metabolism of proteins 

50,1085,233,5271

ST8SIA3 NOD2, FSTL1, RAD52, CCT6A, STX17, CNIH1, NAPB, 
RAD23B, CHCHD1, APC, RAB30, RAB31, FBXO21, UBE2E3, 
RAB33B, TECTB, ST3GAL1, OGT, ST8SIA2, NUP93, SRP14, 
MRPL51, FEM1C, FBXO11, KCTD7, INO80C, RAB8A, GNG7, 
RAB14, ABRAXAS2, NUP210, ASB12, MRPL10, MYSM1, 
ING2, CHM, TRAF3, RAB5B, NR5A2, USP37, DPP4, FSHB, 
OPCML, SEC11A, CSNK2A1, SPON1, DERL1, GCNT3, FGF23

R-BTA-8978868 
Fatty acid metabolism 

5,94,233,5271

ACSL6 PON3, ACSL3, MORC2, PHYH

R-BTA-71291 
Metabolism of amino acids 

and derivatives 
7,155,233,5271

PYCR1 SLC25A21, TDO2, AASS, DBT, SERINC5, SLC25A10

miR-191 41 R-BTA-556833 
Metabolism of lipids 

6,360,140,5271

PLPP6 SLC22A5, ASAH1, CPNE3, PCYT1A, COL4A3BP

R-BTA-392499 
Metabolism of proteins 

15,1085,140,5271

EXOC4 BABAM2, MRPL34, TUBA1A, USP22, RPL21, PHC3, COPZ1, 
IKBKG, USO1, CKAP4, SPTB, LMAN1L, THRB

miR-30d 61 R-BTA-556833 
Metabolism of lipids 

11,360,136,5271

CYP51A1 FITM2, TNFAIP8L1, LOC782061, ELOVL3, PRKAB2, GPAT3, 
MBOAT1, PIK3R1, ARSI, SAMD8

R-BTA-392499_ 
Metabolism of proteins 

31,1085,136,5271

ESR1 PSMD13, RPL35, TMED9, SHISA5, FEM1A, NAPB, KDELR2, 
RNF20, USP12, MRPS2, RCE1, DDX17, PRMT3, PTP4A2, 
RANGAP1, DPH3, GNE, HLTF, BARD1, USP28, ACTR1A, 
TRAF3, NUS1, GCG, SEC11A, GNB1, FGF23, ARSI, WSB1, 
PSME3
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cows [47]. In another study, addition of high oleic sunflower 
seeds to the cows’ ration was associated with an increase in 
the proportion of C18:0 and C18:1 in milk and an increase 
in PPARGC1B transcriptional activity in the mammary gland 
[48].
  The PPP1R16B gene, protein phosphatase 1 regulatory in-
hibitor subunit 16B, is involved in biological processes such 
as endothelial barrier establishment and positive regulation 
of blood vessel endothelial cell proliferation involved in 
sprouting angiogenesis. According to Pszczola et al [49], this 
gene was associated with cows' methane production level, 
which, according to the authors, is caused by the presumed 
impact of this gene on digestion and nutrient assimilation 
processes. At the same time, when taking phenotypic traits 
into account, the researchers also made adjustments to the 
fat and protein content of milk. Earlier studies have linked 
fatty acid levels in milk to methane production in cows; in 
particular C18:1 level had a negative correlation with CH4 
[50].
  The CLMN gene, calmin isoform X1, has been identified 
as one of the genes sensitive to the vitamin A metabolite all-
trans retinoic acid (atRA), which regulates the development 
of the nervous system during embryonic development [51]. 
Although the role of CLMN gene in regulating the synthesis 
of protein-fat constituents of milk is not clear, there is evidence 
supporting its involvement in lipid metabolism. GWAS 
analysis revealed an association of SNP in the CLMN gene 
with changes in total cholesterol and plasma LDL-cholester-
ol levels in patients taking statins [52]. In cattle studies, the 
CLMN gene haplotype was associated with meat marbling 
score in Korean beef cattle Hanwoo [53].
  Some target genes detected by reactome pathways analysis 
(Table 5) were associated with certain milk constituents. 
Polymorphic variants of GPAM gene were associated with 
milk fat, protein and dry matter content in Holstein cows’ 
milk [54]. A method combining GWAS with a gene-centric 
approach revealed that the PYCR1 gene is included in genomic 
regions associated with fatty acid profile and milk fat content 
in cow milk [55].
  Our data provide new insights into the relationship be-
tween miRNA expression and milk composition and suggest 
that miR-106b, miR-191, and miR-30d play a potentially sig-
nificant role in galactopoiesis in both Holstein and Ayrshire 
cattle. The differences observed in the expression patterns of 
the analyzed miRNAs may be caused by specific genomic 
architectures of the studied breeds. This is probably caused 
by the fact that in a number of candidate genes the pheno-
typic effect varies both by lactation number and dairy cattle 
breed.
  Since different breeds may have different genetic and epi-
genetic backgrounds that affect miRNA expression and milk 
composition, it would be advisable to compare the results with 

other dairy cattle breeds (Jersey, Danish Red) and combined 
productivity breeds (Brown Swiss, Simmental). Identifica-
tion of the target genes and pathways of these miRNAs in 
mammary tissue and milk would also be useful, as well as 
confirmation of their action by functional analyses such as 
knockdown or overexpression experiments. This will help to 
identify the molecular mechanisms of lactation, as well as 
the epigenetic mechanisms controlling milk composition 
and quality in the studied breeds, which may benefit the 
dairy industry and consumers.
  Analysis of miRNA expression levels can also be used to 
predict milk composition and quality or to select cows with 
desired milk characteristics. In addition, external factors like 
diet and environment, can alter miRNA expression levels to 
enhance milk composition and quality. These applications 
will require further validation and optimization in future 
studies.

CONCLUSION

Our results showed that milk from Holstein and Ayrshire 
breeds had different protein-fat component ratios. The ex-
pression levels of miR-106b, miR-191, and miR-30d in milk 
samples differed depending on the lactation period and 
breed. The correlation analysis did not reveal a correlation 
between changes in miRNA expression level and milk fat 
content. However, a negative relationship with several milk 
fatty acids in both breeds was observed. A positive correla-
tion between the expression levels of miR-106b and miR-30d 
and the total protein and casein content was found in the 
milk of Ayrshire cows. This finding suggests that different 
epigenetic mechanisms regulating the synthesis of milk com-
ponents in mammary gland tissues might exist in different 
breeds. The calculated AUC values in ROC curves analysis 
showed that changes in the expression of miR-106b and 
miR-30d can be a prognostic marker for the milk composi-
tion in terms of C18:0, protein and casein content in Ayrshire 
cows. In Holstein cows, the expression level of miR-106b can 
also be a prognostic factor, but for fatty acid composition of 
milk (C18:1, SFA, and SCFA).
  The analysis of the relative expression levels of key miRNAs 
in dairy cow milk contributes to a better understanding of 
epigenetic factors affecting milk composition and expands 
our knowledge of lactogenesis and galactopoiesis. The pro-
posed real-time RT-qPCR method using stem-loop primers 
and the designed TaqMan probe is a universal tool for milk 
miRNA analysis, which other researchers can use for further 
characterization of these miRNAs.
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