1. Garcia-Gomez B, Vazquez-Oderiz ML, Munoz-Ferreiro N, Romero-Rodriguez MA, Vazquez M. Interaction between rennet source and transglutaminase in white fresh cheese production: Effect on physicochemical and textural properties. LWT-Food Sci Technol 2019;113:108279.
https://doi.org/10.1016/j.lwt.2019.108279
2. Migliorati L, Boselli L, Pirlo G, Moschini M, Masoero F. Corn silage replacement with barley silage in dairy cows’ diet does not change milk quality, cheese quality and yield. J Sci Food Agric 2017;97:3396–401.
https://doi.org/10.1002/jsfa.8190
3. Radkowska I, Herbut E. The effect of housing system of Simmental cows on processing suitability of milk and quality of dairy products. Anim Sci Pap Rep 2017;35:147–58.
4. Gulati A, Galvin N, Kennedy E, et al. Effect of reducing daily herbage allowance during early lactation on composition and processing characteristics of milk from spring-calved herds. Int Dairy J 2019;92:69–76.
https://doi.org/10.1016/j.idairyj.2019.01.008
5. Cecchinato A, Chessa S, Ribeca C, et al. Genetic variation and effects of candidate-gene polymorphisms on coagulation properties, curd firmness modeling and acidity in milk from Brown Swiss cows. Animal 2015;9:1104–12.
https://doi.org/10.1017/S1751731115000440
6. Kyselová J, Ječmínková K, Matějíčková J, et al. Physiochemical characteristics and fermentation ability of milk from Czech Fleckvieh cows are related to genetic polymorphisms of
β-casein,
κ-casein, and
β-lactoglobulin. Asian-Australas J Anim Sci 2019;32:14–22.
https://doi.org/10.5713/ajas.17.0924
7. Winter A, Kramer W, Werner FAO, et al. Association of lysine232 alanine polymorphism in bovine gene encoding acylCoA:diacylglycerol acyltransferase (
DGAT1) with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci USA 2002;99:9300–5.
https://doi.org/10.1073/pnas.142293799
9. Carvajal AM, Huircan P, Dezamour JM, et al. Milk fatty acid profile is modulated by
DGAT1 and
SCD1 genotypes in dairy cattle on pasture and strategic supplementation. Genet Mol Res 2016;15:gmr.15027057.
https://doi.org/10.4238/gmr.15027057
10. Cecchinato A, Ribeca C, Chessa S, et al. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows. Animal 2014;8:1062–70.
https://doi.org/10.1017/S1751731114001098
11. Safina NY, Shakirov SK, Zinnatova FF, Fattakhova ZF, Gaynutdinova ER, Shayakhmetova LN. Dynamics of dairy production of heifers of different genotypes of stearoyl-coa desaturase (SCD1). Res J Pharm Biol Chem Sci 2018;9:2028–31.
13. Mauric M, Masek T, Ljoljic DB, Grbavac J, Starcevic K. Effects of different variants of the
FASN gene on production performance and milk fatty acid composition in Holstein × Simmental dairy cows. Vet Med 2019;64:101–8.
https://doi.org/10.17221/73/2018-VETMED
14. Kuhn C, Thaller G, Winter A, et al. Evidence for multiple alleles at the
DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics 2004;167:1873–81.
https://doi.org/10.1534/genetics.103.022749
17. Medrano JF, Sharrow L. Genotyping of bovine beta-casein loci by restriction site modification of polymerase chain reaction (PCR) amplified DNA. J Dairy Sci 1991;74:282.
18. Miluchová M, Gábor M, Trakovická A. Analysis of Slovak Spotted breed for bovine beta casein A1 variant as risk factor for human health. Acta Biochim Pol 2013;60:799–801.
https://doi.org/10.18388/abp.2013_2061
19. Barroso A, Dunner S, Caňón J. Technical Note: Detection of bovine kappa-casein variants A, B, C, and E by means of polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). J Anim Sci 1998;76:1535–8.
https://doi.org/10.2527/1998.7661535x
20. Strzalkowska N, Krzyzewski J, Zwierzchowski L, Ryniewicz Z. Effects of κ-casein and β-lactoglobulin loci polymorphism, cows’ age, stage of lactation and somatic cell count on daily milk yield and milk composition in Polish Black-and-White cattle. Anim Sci Pap Rep 2002;20:21–35.
21. Inostroza KB, Scheuermann ES, Sepulveda NA. Stearoyl CoA desaturase and fatty acid synthase gene polymorphisms and milk fatty acid composition in Chilean Black Friesian cows. Rev Colom Cienc Pecua 2013;26:263–9.
22. CSN EN ISO 1211 (570534). Milk – fat content determination – gravimetric method (Reference method). Prague, Czech: Czech Normalization Institute; 2011.
23. CSN EN ISO 8968–1 (570528). Milk and milk products - determination of nitrogen content - part 1: Kjeldahl method and calculation of crude protein. Prague, Czech: Czech Normalization Institute; 2014.
24. Horne DS. Ethanol stability and milk composition. Mc Sweeny PLH, O’Mahony JA, editorsAdvanced dairy chemistry, volume 1b, proteins, applied aspects. New York, USA: Springer-Verlag; 2016.
25. ON 57 0534. Milk fermentation ability determination. Prague, Czech: Standard Milk Industry Prague; 1986. [in Czech]
26. Hanuš O, Kučera J, Yong T, et al. Effect of sires on wide scale of milk indicators in first calving Czech Fleckvieh cows. Arch Anim Breed 2011;54:36–50.
https://doi.org/10.5194/aab-54-36-2011
27. Samková E, Cempírková R, Hanuš O, et al. Milk: production and quality. Scientific monograph. Ceske Budejovice, Czech: University of South Bohemia, Agricultural Faculty; 2012. (in Czech)
28. Haynes W. Tukey’s test. Dubitzky W, Wolkenhauer O, Cho KH, Yokota H, editorsEncyclopedia of systems biology. New York, USA: Springer-Verlag; 2013.
30. Carvajal AM, Huircan P, Dezamour JM, et al. Milk fatty acid profile is modulated by
DGAT1 and
SCD1 genotypes in dairy cattle on pasture and strategic supplementation. Genet Mol Res 2016;15:gmr.15027057.
https://doi.org/10.4238/gmr.15027057
31. Barton L, Bures D, Kott T, Rehak D. Associations of polymorphisms in bovine
DGAT1,
FABP4,
FASN, and
PPARGC1A genes with intramuscular fat content and the fatty acid composition of muscle and subcutaneous fat in Fleckvieh bulls. Meat Sci 2016;114:18–23.
https://doi.org/10.1016/j.meatsci.2015.12.004
32. Citek J, Rehout V, Hradecka E, Vecerek L, Panicke L. The breeding values of german holstein sires and the
DGAT1 polymorphism. Arch Anim Breed 2007;50:136–46.
https://doi.org/10.5194/aab-50-136-2007
33. Čítek J, Hanusová L, Brzáková M, Večerek L, Panicke L, Lískovcová L. Associations between gene polymorphisms, breeding values, and glucose tolerance test parameters in german Holstein sires. Czech J Anim Sci 2018;63:167–73.
https://doi.org/10.17221/8/2017-CJAS
34. Chebel RC, Susca F, Santos JEP. Leptin genotype is associated with lactation performance and health of Holstein cows. J Dairy Sci 2008;91:2893–900.
https://doi.org/10.3168/jds.2007-0891
35. Ozdemir O, Kopuzlu S, Topal M, Bilgin OC. Relationships between milk protein polymorphisms and production traits in cattle: a systematic review and meta-analysis. Arch Anim Breed 2018;61:197–206.
https://doi.org/10.5194/aab-61-197-2018
36. Neamt RI, Saplacan G, Acanticai S, Cziszter LT, Gavojdian D, Ilie D. The influence of
CSN3 and
LGB polymorphisms on milk production and chemical composition in Romanian Simmental cattle. Acta Biochim Pol 2017;64:493–7.
https://doi.org/10.18388/abp.2016_1454
37. Bartonova P, Vrtkova I, Kaplanova K, Urban T. Association between
CSN3 and
BCO2 gene polymorphisms and milk performance traits in the Czech Fleckvieh cattle breed. Genet Mol Res 2012;11:1058–63.
http://dx.doi.org/10.4238/2012.April.27.4
38. Cecchinato A, Bobbo T, Ruegg PL, Gallo L, Bittante G, Pegolo S. Genetic variation in serum protein pattern and blood beta-hydroxybutyrate and their relationships with udder health traits, protein profile, and cheese-making properties in Holstein cows. J Dairy Sci 2018;101:11108–19.
https://doi.org/10.3168/jds.2018-14907
39. Poulsen NA, Bertelsen HP, Jensen HB, et al. The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds. J Dairy Sci 2013;96:4830–42.
https://doi.org/10.3168/jds.2012-6422
40. Tyulkin SV, Vafin RR, Zagidullin LR, Akhmetov TM, Petrov AN, Diel F. Technological properties of milk of cows with different genotypes of kappa-casein and beta-lactoglobulin. Foods Raw Mat 2018;6:154–62.
https://doi.org/10.21603/2308-4057-2018-1-154-162