1. Shenk MK. Fertility and fecundity. Whelehan P, Bolin A, editorsThe international encyclopedia of human sexuality. Hoboken, NJ, USA: Wiley-Blackwell; 2015. p. 369–426.
2. Wood JW. Fecundity and natural fertility in humans. Oxf Rev Reprod Biol 1989;11:61–109.
5. Binsila B, Selvaraju S, Somashekar L, et al. Molecular advances in semen quality assessment and improving fertility in bulls—a review. Indian J Anim Reprod 2018;39:1–10.
6. Patel AS, Leong JY, Ramasamy R. Prediction of male infertility by the World Health Organization laboratory manual for assessment of semen analysis: A systematic review. Arab J Urol 2018;16:96–102.
https://doi.org/10.1016/j.aju.2017.10.005
7. Aitken RJ, Best FS, Richardson DW, Djahanbakhch O, Templeton A, Lees MM. An analysis of semen quality and sperm function in cases of oligozoospermia. Fertil Steril 1982;38:705–11.
https://doi.org/10.1016/S0015-0282(16)46698-7
10. Hoflack G, Opsomer G, Rijsselaere T, et al. Comparison of computer-assisted sperm motility analysis parameters in semen from belgian blue and Holstein–Friesian bulls. Reprod Domest Anim 2007;42:153–61.
https://doi.org/10.1111/j.1439-0531.2006.00745.x
11. Veeramachaneni DN, Ott RS, Heath EH, McEntee K, Bolt DJ, Hixon JE. Pathophysiology of small testes in beef bulls: relationship between scrotal circumference, histopathologic features of testes and epididymides, seminal characteristics, and endocrine profiles. Am J Vet Res 1986;47:1988–99.
16. Eo Y, Kim SH, Bang S-G, Oh MG, Park CH, Yoon JT. Effect of Extenders with TCG and DMSO on the Viability of Rabbit Sperm. J Anim Reprod Biotechnol 2019;34:100–5.
https://doi.org/10.12750/JARB.34.2.100
21. Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Mol Hum Reprod 1996;2:613–9.
https://doi.org/10.1093/molehr/2.8.613
23. DeJarnette JM, Marshall CE, Lenz RW, Monke DR, Ayars WH, Sattler CG. Sustaining the fertility of artificially inseminated dairy cattle: the role of the artificial insemination industry. J Dairy Sci 2004;87:E93–E104.
https://doi.org/10.3168/jds.S0022-0302(04)70065-X
25. Selvaraju S, Parthipan S, Somashekar L, et al. Current status of sperm functional genomics and its diagnostic potential of fertility in bovine (
Bos taurus). Syst Biol Reprod Med 2018;64:484–501.
https://doi.org/10.1080/19396368.2018.1444816
26. Karoui S, Díaz C, Serrano M, Cue R, Celorrio I, Carabaño MJ. Time trends, environmental factors and genetic basis of semen traits collected in Holstein bulls under commercial conditions. Anim Reprod Sci 2011;124:28–38.
https://doi.org/10.1016/j.anireprosci.2011.02.008
30. Groen AF, Steine T, Colleau J-J, Pedersen J, Pribyl J, Reinsch N. Economic values in dairy cattle breeding, with special reference to functional traits. Report of an EAAP-working group. Livest Prod Sci 1997;49:1–21.
https://doi.org/10.1016/S0301-6226(97)00041-9
35. Anzar M, Kroetsch T, Buhr MM. Comparison of different methods for assessment of sperm concentration and membrane integrity with bull semen. J Androl 2009;30:661–8.
https://doi.org/10.2164/jandrol.108.007500
36. Prathalingam NS, Holt WW, Revell SG, Jones S, Watson PF. The precision and accuracy of six different methods to determine sperm concentration. J Androl 2006;27:257–62.
https://doi.org/10.2164/jandrol.05112
38. Eggert-Kruse W, Reimann-Andersen J, Rohr G, Pohl S, Tilgen W, Runnebaum B. Clinical relevance of sperm morphology assessment using strict criteria and relationship with sperm-mucus interaction
in vivo and
in vitro
. Fertil Steril 1995;63:612–24.
https://doi.org/10.1016/S0015-0282(16)57435-4
40. Donnelly ET, Lewis SE, McNally JA, Thompson W.
In vitro fertilization and pregnancy rates: the influence of sperm motility and morphology on IVF outcome. Fertil Steril 1998;70:305–14.
https://doi.org/10.1016/S0015-0282(98)00146-0
43. Cuche E, Marquet P, Depeursinge C. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms. Appl Opt 1999;38:6994–7001.
https://doi.org/10.1364/AO.38.006994
49. Shen S, Wang J, Liang J, He D. Comparative proteomic study between human normal motility sperm and idiopathic asthenozoospermia. World J Urol 2013;31:1395–401.
https://doi.org/10.1007/s00345-013-1023-5
53. Cabrillana ME, Monclus MA, Lancellotti TES, et al. Thiols of flagellar proteins are essential for progressive motility in human spermatozoa. Reprod Fertil Dev 2017;29:1435–46.
https://doi.org/10.1071/rd16225
55. Morisawa S, Mizuta T, Kubokawa K, Tanaka H, Morisawa M. Acrosome reaction in spermatozoa from the amphioxus acrosome reaction in Branchiostoma belcheri (Cephalochordata, Chordata). Zool Sci 2004;21:1079–84.
https://doi.org/10.2108/zsj.21.1079
56. Okamura N, Tajima Y, Soejima A, Masuda H, Sugita Y. Sodium bicarbonate in seminal plasma stimulates the motility of mammalian spermatozoa through direct activation of adenylate cyclase. J Biol Chem 1985;260:9699–705.
58. Elbashir S, Magdi Y, Rashed A, et al. Relationship between sperm progressive motility and DNA integrity in fertile and infertile men. Middle East Fertil Soc J 2018;23:195–8.
https://doi.org/10.1016/j.mefs.2017.12.002
60. Vantman D, Banks SM, Koukoulis G, Dennison L, Sherins RJ. Assessment of sperm motion characteristics from fertile and infertile men using a fully automated computer-assisted semen analyzer. Fertil Steril 1989;51:156–61.
https://doi.org/10.1016/S0015-0282(16)60446-6
61. Günzel-Apel A, Günther C, Terhaer P, Bader H. Computer-assisted analysis of motility, velocity and linearity of dog spermatozoa. J Reprod Fertil Supplement 1993;47:271–8.
63. Katz DF, Davis RO, Delandmeter BA, Overstreet JW. Real-time analysis of sperm motion using automatic video image digitization. Comput Methods Programs Biomed 1985;21:173–82.
https://doi.org/10.1016/0169-2607(85)90002-1
65. Farrell P, Presicce G, Brockett C, Foote R. Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 1998;49:871–9.
https://doi.org/10.1016/S0093-691X(98)00036-3
69. Larsen L, Scheike T, Jensen TK, et al. Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. Hum Reprod 2000;15:1562–7.
https://doi.org/10.1093/humrep/15.7.1562
70. Hirano Y, Shibahara H, Obara H, et al. Andrology: Relationships between sperm motility characteristics assessed by the computer-aided sperm analysis (CASA) and fertilization rates
in vitro
. J Assist Reprod Genet 2001;18:215–20.
https://doi.org/10.1023/A:1009420432234
77. Rijsselaere T, Van Soom A, Maes D, de Kruif A. Effect of technical settings on canine semen motility parameters measured by the Hamilton-Thorne analyzer. Theriogenology 2003;60:1553–68.
https://doi.org/10.1016/S0093-691X(03)00171-7
78. Nagy Á, Polichronopoulos T, Gáspárdy A, Solti L, Cseh S. Correlation between bull fertility and sperm cell velocity parameters generated by computer-assisted semen analysis. Acta Vet Hung 2015;63:370–81.
https://doi.org/10.1556/004.2015.035
80. Krause W. Computer-assisted semen analysis systems: comparison with routine evaluation and prognostic value in male fertility and assisted reproduction. Hum Reprod 1995;10:60–6.
https://doi.org/10.1093/humrep/10.suppl_1.60
81. Soler C, García-Molina A, Sancho M, et al. A new technique for analysis of human sperm morphology in unstained cells from raw semen. Reprod Fertil Dev 2016;28:428–33.
https://doi.org/10.1071/RD14087
82. Gallagher MT, Smith D, Kirkman-Brown J. CASA: tracking the past and plotting the future. Reprod Fertil Dev 2018;30:867–74.
https://doi.org/10.1071/RD17420
83. Støstad HN, Johnsen A, Lifjeld JT, Rowe M. Sperm head morphology is associated with sperm swimming speed: a comparative study of songbirds using electron microscopy. Evol 2018;72:1918–32.
https://doi.org/10.1111/evo.13555
86. Samper J, Hellander J, Crabo B. Relationship between the fertility of fresh and frozen stallion semen and semen quality. J Reprod Fertil Supplement 1991;44:107.
87. Santolaria P, Vicente-Fiel S, Palacín I, et al. Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep. Anim Reprod Sci 2015;163:82–8.
https://doi.org/10.1016/j.anireprosci.2015.10.001
89. Broekhuijse MLWJ, Šoštarić E, Feitsma H, Gadella BM. Application of computer-assisted semen analysis to explain variations in pig fertility. J Anim Sci 2012;90:779–89.
https://doi.org/10.2527/jas.2011-4311
91. Gil MC, García-Herreros M, Barón FJ, Aparicio IM, Santos AJ, García-Marín LJ. Morphometry of porcine spermatozoa and its functional significance in relation with the motility parameters in fresh semen. Theriogenology 2009;71:254–63.
https://doi.org/10.1016/j.theriogenology.2008.07.007
92. Bompart D, García-Molina A, Valverde A, et al. CASA-Mot technology: how results are affected by the frame rate and counting chamber. Reprod Fertil Dev 2018;30:810–9.
https://doi.org/10.1071/RD17551
94. Holt C, Holt WV, Moore HDM. Choice of operating conditions to minimize sperm subpopulation sampling bias in the assessment of boar semen by computer-assisted semen analysis. J Androl 1996;17:587–96.
https://doi.org/10.1002/j.1939-4640.1996.tb01837.x
95. Betancourt M, Reséndiz A. Effect of two insecticides and two herbicides on the porcine sperm motility patterns using computer-assisted semen analysis (CASA)
in vitro
. Reprod Toxicol 2006;22:508–12.
https://doi.org/10.1016/j.reprotox.2006.03.001
96. Broekhuijse MLWJ, Šoštarić E, Feitsma H, Gadella BM. Additional value of computer assisted semen analysis (CASA) compared to conventional motility assessments in pig artificial insemination. Theriogenology 2011;76:1473–86.e1.
https://doi.org/10.1016/j.theriogenology.2011.05.040
97. Tomlinson MJ. Uncertainty of measurement and clinical value of semen analysis: has standardisation through professional guidelines helped or hindered progress? Andrology 2016;4:763–70.
https://doi.org/10.1111/andr.12209
99. Wakimoto Y, Fukui A, Kojima T, Hasegawa A, Shigeta M, Shibahara H. Application of computer-aided sperm analysis (CASA) for detecting sperm-immobilizing antibody. Am J Reprod Immunol 2018;79:e12814.
https://doi.org/10.1111/aji.12814
100. van der Horst G, Maree L, du Plessis Stefan S. Current perspectives of CASA applications in diverse mammalian spermatozoa. Reprod Fertil Dev 2018;30:875–88.
https://doi.org/10.1071/RD17468
101. De Andrade AFC, De Arruda RP, Celeghini ECC, et al. Fluorescent stain method for the simultaneous determination of mitochondrial potential and integrity of plasma and acrosomal membranes in boar sperm. Reprod Domest Anim 2007;42:190–4.
https://doi.org/10.1111/j.1439-0531.2006.00751.x
102. Rahman MM, Naher N, Isam MM, et al. Natural vs synchronized estrus: determinants of successful pregnancy in ewes using frozen-thawed Suffolk semen. J Anim Reprod Biotechnol 2020;35:183–9.
https://doi.org/10.12750/JARB.35.2.183
104. Jha PK, Alam MGS, Mansur MAA, et al. Effects of number of frozen-thawed ram sperm and number of inseminations on fertility in synchronized ewes under field condition. J Anim Reprod Biotechnol 2020;35:190–7.
https://doi.org/10.12750/JARB.35.2.190
105. Kang SS, Kim UH, Lee MS, Lee SD, Cho SR. Spermatozoa motility, viability, acrosome integrity, mitochondrial membrane potential and plasma membrane integrity in 0.25 mL and 0.5 mL straw after frozen-thawing in Hanwoo bull. J Anim Reprod Biotechnol 2020;35:307–14.
https://doi.org/10.12750/JARB.35.4.307
109. Mahiddine FY, Qamar AY, Kim MJ. Canine amniotic membrane derived mesenchymal stem cells exosomes addition in canine sperm freezing medium. J Anim Reprod Biotechnol 2020;35:268–72.
https://doi.org/10.12750/JARB.35.3.268
112. Garner DL, Pinkel D, Johnson LA, Pace MM. Assessment of spermatozoal function using dual fluorescent staining and flow cytometric analyses. Biol Reprod 1986;34:127–38.
https://doi.org/10.1095/biolreprod34.1.127
114. Pintado B, De La Fuente J, Roldan E. Permeability of boar and bull spermatozoa to the nucleic acid stains propidium iodide or Hoechst 33258, or to eosin: accuracy in the assessment of cell viability. J Reprod Fertil 2000;118:145–52.
115. Qamar AY, Fang X, Bang S, Kim MJ, Cho J. Effects of kinetin supplementation on the post-thaw motility, viability, and structural integrity of dog sperm. Cryobiology 2020;95:90–6.
https://doi.org/10.1016/j.cryobiol.2020.05.015
117. Alm K, Taponen J, Dahlbom M, Tuunainen E, Koskinen E, Andersson M. A novel automated fluorometric assay to evaluate sperm viability and fertility in dairy bulls. Theriogenology 2001;56:677–84.
https://doi.org/10.1016/S0093-691X(01)00599-4
118. Qamar AY, Fang X, Bang S, Shin ST, Cho J. The effect of astaxanthin supplementation on the post-thaw quality of dog semen. Reprod Domest Anim 2020;55:1163–71.
https://doi.org/10.1111/rda.13758
119. Schäfer-Somi S, Aurich C. Use of a new computer-assisted sperm analyzer for the assessment of motility and viability of dog spermatozoa and evaluation of four different semen extenders for predilution. Anim Reprod Sci 2007;102:1–13.
https://doi.org/10.1016/j.anireprosci.2005.03.019
122. Fraser LR, Quinn PJ. A glycolytic product is obligatory for initiation of the sperm acrosome reaction and whiplash motility required for fertilization in the mouse. Reproduction 1981;61:25–35.
https://doi.org/10.1530/jrf.0.0610025
126. Ahmad M, Nasrullah R, Riaz H, Sattar A, Ahmad N. Changes in motility, morphology, plasma membrane and acrosome integrity during stages of cryopreservation of buck sperm. J S Afr Vet Assoc 2014;85:a972.
https://doi.org/10.4102/jsava.v85i1.972
128. Mendoza C, Carreras A, Moos J, Tesarik J. Distinction between true acrosome reaction and degenerative acrosome loss by a one-step staining method using
Pisum sativum agglutinin. Reproduction 1992;95:755–63.
https://doi.org/10.1530/jrf.0.0950755
129. Mortimer D, Curtis EF, Miller RG. Specific labelling by peanut agglutinin of the outer acrosomal membrane of the human spermatozoon. Reproduction 1987;81:127–35.
https://doi.org/10.1530/jrf.0.0810127
133. Pena FJ, Rodríguez Martínez H, Tapia J, Ortega Ferrusola C, González Fernández L, Mcías García B. Mitochondria in mammalian sperm physiology and pathology: a review. Reprod Domest Anim 2009;44:345–9.
https://doi.org/10.1111/j.1439-0531.2008.01211.x
135. Evenson DP, Darzynkiewicz Z, Melamed MR. Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility. J Histochem Cytochem 1982;30:279–80.
136. Kim D-S, Hwangbo Y, Cheong H-T, Park C-K. Effects of discontinuous percoll gradient containing alpha-linolenic acid on characteristics of frozen-thawed boar spermatozoa. J Anim Reprod Biotechnol 2020;35:58–64.
https://doi.org/10.12750/JARB.35.1.58
137. Garner DL, Thomas CA, Joerg HW, DeJarnette JM, Marshall CE. Fluorometric assessments of mitochondrial function and viability in cryopreserved bovine spermatozoa. Biol Reprod 1997;57:1401–6.
https://doi.org/10.1095/biolreprod57.6.1401
138. Martínez-Pastor F, Mata-Campuzano M, Alvarez-Rodríguez M, Álvarez M, Anel L, De Paz P. Probes and techniques for sperm evaluation by flow cytometry. Reprod Domest Anim 2010;45:Suppl 267–78.
https://doi.org/10.1111/j.1439-0531.2010.01622.x
139. Marchetti C, Jouy N, Leroy-Martin B, Defossez A, Formstecher P, Marchetti P. Comparison of four fluorochromes for the detection of the inner mitochondrial membrane potential in human spermatozoa and their correlation with sperm motility. Hum Reprod 2004;19:2267–76.
https://doi.org/10.1093/humrep/deh416
140. Boe-Hansen G, Fortes MS, Satake N. Morphological defects, sperm DNA integrity, and protamination of bovine spermatozoa. Andrology 2018;6:627–33.
https://doi.org/10.1111/andr.12486
141. Santi D, Spaggiari G, Simoni M. Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management - meta-analyses. Reprod Biomed Online 2018;37:315–26.
https://doi.org/10.1016/j.rbmo.2018.06.023
143. Koonjaenak S, Johannisson A, Pongpeng P, Wirojwuthikul S, Kunavongkrit A, Rodriguez-Martinez H. Seasonal variation in nuclear DNA integrity of frozen–thawed spermatozoa from Thai AI swamp buffaloes (
Bubalus bubalis). J Vet Med Series A 2007;54:377–83.
https://doi.org/10.1111/j.1439-0442.2007.00946.x
146. Virro MR, Larson-Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA®) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in
in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 2004;81:1289–95.
https://doi.org/10.1016/j.fertnstert.2003.09.063
147. Boe-Hansen GB, Christensen P, Vibjerg D, Nielsen MBF, Hedeboe AM. Sperm chromatin structure integrity in liquid stored boar semen and its relationships with field fertility. Theriogenology 2008;69:728–36.
https://doi.org/10.1016/j.theriogenology.2007.12.004
148. Waterhouse K, Haugan T, Kommisrud E, et al. Sperm DNA damage is related to field fertility of semen from young Norwegian Red bulls. Reprod Fertil Dev 2006;18:781–8.
https://doi.org/10.1071/RD06029
149. García-Macías V, De Paz P, Martinez-Pastor F, et al. DNA fragmentation assessment by flow cytometry and Sperm–Bos–Halomax (bright-field microscopy and fluorescence microscopy) in bull sperm. Int J Androl 2007;30:88–98.
https://doi.org/10.1111/j.1365-2605.2006.00723.x
153. Bianchi PG, Manicardi GC, Urner F, Campana A, Sakkas D. Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of hidden anomalies in normal spermatozoa. Mol Hum Reprod 1996;2:139–44.
https://doi.org/10.1093/molehr/2.3.139
156. Raad G, Bakos HW, Bazzi M, et al. Differential impact of four sperm preparation techniques on sperm motility, morphology, DNA fragmentation, acrosome status, oxidative stress and mitochondrial activity: a prospective study. Andrology. 2021. May. 17[Accepted].
https://doi.org/10.1111/andr.13038
159. Novotný J, Oborná I, Brezinová J, et al. The occurrence of reactive oxygen species in the semen of males from infertile couples. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2003;147:173–6.
164. Brewis IA, Morton IE, Mohammad SN, Browes CE, Moore HDM. Measurement of intracellular calcium concentration and plasma membrane potential in human spermatozoa using flow cytometry. J Androl 2000;21:238–49.
166. Piehler E, Petrunkina AM, Ekhlasi-Hundrieser M, Töpfer-Petersen E. Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation. Cytometry A 2006;69:1062–70.
https://doi.org/10.1002/cyto.a.20338
167. Kim E-J, Talha NAH, Jeon Y-B, Yu I-J. Effect of κ-Carrageenan on Sperm Quality in Cryopreservation of Canine Semen. J Anim Reprod Biotechnol 2019;34:57–63.
https://doi.org/10.12750/JARB.34.1.57
168. Samanta L, Swain N, Ayaz A, Venugopal V, Agarwal A. Post-translational modifications in sperm proteome: the chemistry of proteome diversifications in the pathophysiology of male factor infertility. Biochim Biophys Acta Gen Subj 2016;1860:1450–65.
https://doi.org/10.1016/j.bbagen.2016.04.001
171. Domínguez-Rebolledo ÁE, Martínez-Pastor F, Fernández-Santos MR, et al. Comparison of the TBARS assay and BODIPY C
11 probes for assessing lipid peroxidation in red deer spermatozoa. Reprod Domest Anim 2010;45:e360–8.
https://doi.org/10.1111/j.1439-0531.2009.01578.x
172. Nagy S, Jansen J, Topper EK, Gadella BM. A triple-stain flow cytometric method to assess plasma-and acrosome-membrane integrity of cryopreserved bovine sperm immediately after thawing in presence of egg-yolk particles. Biol Reprod 2003;68:1828–35.
https://doi.org/10.1095/biolreprod.102.011445
173. Harper CV, Barratt CL, Publicover SJ, Kirkman-Brown JC. Kinetics of the progesterone-induced acrosome reaction and its relation to intracellular calcium responses in individual human spermatozoa. Biol Reprod 2006;75:933–9.
https://doi.org/10.1095/biolreprod.106.054627
174. Drabovich AP, Saraon P, Jarvi K, Diamandis EP. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat Rev Urol 2014;11:278–88.
https://doi.org/10.1038/nrurol.2014.74
182. Brandon CI, Heusner GL, Caudle AB, Fayrer-Hosken RA. Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins and their correlation with fertility. Theriogenology 1999;52:863–73.
https://doi.org/10.1016/S0093-691X(99)00178-8
185. Wang YX, Wu Y, Chen HG, et al. Seminal plasma metabolome in relation to semen quality and urinary phthalate metabolites among Chinese adult men. Environ Int 2019;129:354–63.
https://doi.org/10.1016/j.envint.2019.05.043
186. Kumar A, Kroetsch T, Blondin P, Anzar M. Fertility-associated metabolites in bull seminal plasma and blood serum: 1H nuclear magnetic resonance analysis. Mol Reprod Dev 2015;82:123–31.
https://doi.org/10.1002/mrd.22450
189. Aguiar GFM, Batista BL, Rodrigues JL, et al. Determination of trace elements in bovine semen samples by inductively coupled plasma mass spectrometry and data mining techniques for identification of bovine class. J Dairy Sci 2012;95:7066–73.
https://doi.org/10.3168/jds.2012-5515
190. Bhat GK, Sea TL, Olatinwo MO, et al. Influence of a leptin deficiency on testicular morphology, germ cell apoptosis, and expression levels of apoptosis-related genes in the mouse. J Androl 2006;27:302–10.
https://doi.org/10.2164/jandrol.05133
192. Liu L, Bao H, Liu F, Zhang J, Shen H. Phthalates exposure of Chinese reproductive age couples and its effect on male semen quality, a primary study. Environ Int 2012;42:78–83.
https://doi.org/10.1016/j.envint.2011.04.005
195. Min K-S, Byambaragchaa M, Kim H, Park M-H. Identification of sperm mRNA biomarkers associated with sex-determination in Korean native cows. J Anim Reprod Biotechnol 2019;34:111–6.
https://doi.org/10.12750/JARB.34.2.111
197. Intasqui P, Agarwal A, Sharma R, Samanta L, Bertolla RP. Towards the identification of reliable sperm biomarkers for male infertility: a sperm proteomic approach. Andrologia 2018;50:e12919.
https://doi.org/10.1111/and.12919
198. Selvaraju S, Parthipan S, Somashekar L, et al. Occurrence and functional significance of the transcriptome in bovine (
Bos taurus) spermatozoa. Sci Rep 2017;7:42392.
https://doi.org/10.1038/srep42392
199. Słowińska M, Paukszto Ł, Jastrzębski JP, et al. Transcriptome analysis of turkey (
Meleagris gallopavo) reproductive tract revealed key pathways regulating spermatogenesis and post-testicular sperm maturation. Poult Sci 2020;99:6094–118.
https://doi.org/10.1016/j.psj.2020.07.031
200. Cho J, Uh K, Ryu J, et al. Development of PCR based approach to detect potential mosaicism in porcine embryos. J Anim Reprod Biotechnol 2020;35:323–8.
https://doi.org/10.12750/JARB.35.4.323
201. Kim S, Cheong HT, Park C. Regulation of the plasminogen activator activity and inflammatory environment via transforming growth factor-beta regulation of sperm in porcine uterine epithelial cells. J Anim Reprod Biotechnol 2020;35:297–306.
https://doi.org/10.12750/JARB.35.4.297
202. Khalil WA, El-Harairy MA, Zeidan AE, Hassan MA, Mohey-Elsaeed O. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int J Vet Sci Med 2018;6:S49–S56.
https://doi.org/10.1016/j.ijvsm.2017.11.001
203. Carvalho JO, Sartori R, Machado GM, Mourão GB, Dode MAN. Quality assessment of bovine cryopreserved sperm after sexing by flow cytometry and their use in
in vitro embryo production. Theriogenology 2010;74:1521–30.
https://doi.org/10.1016/j.theriogenology.2010.06.030