3. Qin S, Zhang K, Applegate TJ, et al. Dietary administration of resistant starch improved caecal barrier function by enhancing intestinal morphology and modulating microbiota composition in meat duck. Br J Nutr 2020;123:172–81.
https://doi.org/10.1017/S0007114519002319
6. Jozefiak D, Rutkowski A, Kaczmarek S, Jensen BB, Engberg RM, Højberg O. Effect of β-glucanase and xylanase supplementation of barley-and rye-based diets on caecal microbiota of broiler chickens. Br Poult Sci 2010;51:546–57.
https://doi.org/10.1080/00071668.2010.507243
12. Deehan EC, Duar RM, Armet AM, Perez-Munoz ME, Jin M, Walter J. Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microb Spect 2017;5:5.5.04.
https://doi.org/10.1128/microbiolspec.BAD-0019-2017
14. Haenen D, Zhang J, Souza da Silva C, et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr 2013;143:274–83.
https://doi.org/10.3945/jn.112.169672
16. Shang Y, Kumar S, Thippareddi H, Kim WK. Effect of dietary fructooligosaccharide (FOS) supplementation on ileal microbiota in broiler chickens. Poult Sci 2018;97:3622–34.
https://doi.org/10.3382/ps/pey131
17. Ebrahimi SH, Valizadeh R, Heidarian Miri V. Rumen microbial community of Saanen goats adapted to a high-fiber diet in the Northeast of Iran. Iran J Appl Anim Sci 2018;8:271–9.
18. De Maesschalck C, Eeckhaut V, Maertens L, et al. Amorphous cellulose feed supplement alters the broiler caecal microbiome. Poult Sci 2019;98:3811–7.
https://doi.org/10.3382/ps/pez090
20. Nursiam I, Ridla M, Hermana W, Nahrowi . Effect of fiber source on growth performance and gastrointestinal tract in broiler chickens. In: IOP Conference Series. Earth Environ Sci 2021;788:012058.
https://doi.org/10.1088/1755-1315/788/1/012058
21. Mateos GG, Jiménez-Moreno E, Serrano MP, Lázaro RP. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. J Appl Poult Res 2012;21:156–74.
https://doi.org/10.3382/japr.2011-00477
22. Rezaei M, Karimi Torshizi M, Wall H, Ivarsson E. Body growth, intestinal morphology and microflora of quail on diets supplemented with micronised wheat fibre. Br Poult Sci 2018;59:422–9.
https://doi.org/10.1080/00071668.2018.1460461
23. Chiou PW, Lu T, Hsu J, Yu B. Effect of different sources of fiber on the intestinal morphology of domestic geese. Asian-Australas J Anim Sci 1996;9:539–50.
https://doi.org/10.5713/ajas.1996.539
24. Teimouri Yansari A. Chemical composition, physical characteristics, rumen degradability of NDF and NDF fractionation in rice straw as an effective fibre in ruminants. Ir J Appl Anim Sci 2017;7:221–8.
26. Rehman H, Vahjen W, Kohl-Parisini A, Ijaz A, Zentek J. Influence of fermentable carbohydrates on the intestinal bacteria and enteropathogens in broilers. World’s Poult Sci J 2009;65:75–90.
https://doi.org/10.1017/S0043933909000063
28. Liu G, Zhao Y, Cao S, et al. Relative bioavailability of selenium yeast for broilers fed a conventional corn–soybean meal diet. J Anim Physiol Anim Nutr 2020;104:1052–66.
https://doi.org/10.1111/jpn.13262
31. Idan F. The role of feed processing and fiber addition on improving the nutrition and growth performance of broilers. Manhattan, KS, USA: Kansas State University; 2019.
32. De la Fuente G, Yañez-Ruiz DR, Seradj A, Balcells J, Belanche A. Methanogenesis in animals with foregut and hindgut fermentation: a review. Anim Prod Sci 2019;59:2109–22.
https://doi.org/10.1071/AN17701
34. Saqui-Salces M, Huang Z, Vila MF, et al. Modulation of intestinal cell differentiation in growing pigs is dependent on the fiber source in the diet. J Anim Sci 2017;95:1179–90.
https://doi.org/10.2527/jas.2016.0947
35. Kef S, Arslan S. The effects of different dietary fiber use on the properties of kefir produced with cow’s and goat’s milk. J Food Proc Preserv 2021;45:e15467.
https://doi.org/10.1111/jfpp.15467
36. McRorie JW, McKeown NM. Understanding the physics of functional fibers in the gastrointestinal tract: an evidence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J Acad Nutr Diet 2017;117:251–64.
https://doi.org/10.1016/j.jand.2016.09.021
42. Barker N, Van Es JH, Kuipers J, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007;449:1003–7.
https://doi.org/10.1038/nature06196
43. Tetteh PW, Basak O, Farin HF, et al. Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-lineage daughters. Cell Stem Cell 2016;18:203–13.
https://doi.org/10.1016/j.stem.2016.01.001
44. Ben-Shahar Y, Abassi Z, Shefer HK, Pollak Y, Bhattacharya U, Sukhotnik I. Accelerated intestinal epithelial cell turnover correlates with stimulated bmp signaling cascade following intestinal ischemia–reperfusion in a rat. Eur J Pediatr Surg 2020;30:64–70.
https://doi.org/10.1055/s-0039-1700550
46. Hossain Z, Hirata T. Molecular mechanism of intestinal permeability: interaction at tight junctions. Mol Biosyst 2008;4:1181–5.
https://doi.org/10.1039/b800402a
55. Weerasooriya V, Rennie MJ, Anant S, Alpers DH, Patterson BW, Klein S. Dietary fiber decreases colonic epithelial cell proliferation and protein synthetic rates in human subjects. Am J physiol Endocrinol Metab 2006;290:E1104–8.
https://doi.org/10.1152/ajpendo.00557.2005
59. Walugembe M, Hsieh JC, Koszewski NJ, Lamont SJ, Persia ME, Rothschild MF. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult Sci 2015;94:2351–9.
https://doi.org/10.3382/ps/pev242
60. Józefiak D, Rutkowski A, Frątczak M, Boros D. The effect of dietary fibre fractions from different cereals and microbial enzyme supplementation on performance, ileal viscosity and short-chain fatty acid concentrations in the caeca of broiler chickens. J Anim Feed Sci 2004;13:487–96.
https://doi.org/10.22358/jafs/67618/2004
61. Jamroz D, Jakobsen K, Bach Knudsen KE, Wiliczkiewicz A, Orda J. Digestibility and energy value of non-starch polysaccharides in young chickens, ducks and geese, fed diets containing high amounts of barley. Comp Biochem Physiol A Mol Integr Physiol 2002;131:657–68.
https://doi.org/10.1016/s1095-6433(01)00517-7
64. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev 2010;23:366–84.
https://doi.org/10.1017/s0954422410000247
67. Vidyasagar S, Barmeyer C, Geibel J, Binder HJ, Rajendran VM. Role of short-chain fatty acids in colonic HCO3 secretion. Am J Physiol Gastrointest Liver Physiol 2005;288:G1217–26.
https://doi.org/10.1152/ajpgi.00415.2004
68. Hadjiagapiou C, Schmidt L, Dudeja PK, Layden TJ, Ramaswamy K. Mechanism(s) of butyrate transport in Caco-2 cells: role of monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 2000;279:G775–80.
https://doi.org/10.1152/ajpgi.2000.279.4.G775
69. Takebe K, Nio J, Morimatsu M, et al. Histochemical demonstration of a Na+-coupled transporter for short-chain fatty acids (Slc5a8) in the intestine and kidney of the mouse. Biomed Res 2005;26:213–21.
https://doi.org/10.2220/biomedres.26.213
70. Ganapathy V, Gopal E, Miyauchi S, Prasad PD. Biological functions of SLC5A8, a candidate tumour suppressor. Biochem Soc Trans 2005;33:237–40.
https://doi.org/10.1042/bst0330237
71. Halestrap AP, Meredith D. The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflügers Arch 2004;447:619–28.
https://doi.org/10.1007/s00424-003-1067-2
72. Shin HJ, Anzai N, Enomoto A, et al. Novel liver-specific organic anion transporter OAT7 that operates the exchange of sulfate conjugates for short chain fatty acid butyrate. Hepatology 2007;45:1046–55.
https://doi.org/10.1002/hep.21596
73. Sellin JH. SCFAs: The enigma of weak electrolyte transport in the colon. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society 1999;14:58–64.
https://doi.org/10.1152/physiologyonline.1999.14.2.58
78. Brown AJ, Goldsworthy SM, Barnes AA, et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003;278:11312–9.
https://doi.org/10.1074/jbc.M211609200
82. Ohira H, Fujioka Y, Katagiri C, et al. Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb 2013;20:425–42.
https://doi.org/10.5551/jat.15065
83. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 2014;20:159–66.
https://doi.org/10.1038/nm.3444
92. Usami M, Kishimoto K, Ohata A, et al. Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res (New York, NY) 2008;28:321–8.
https://doi.org/10.1016/j.nutres.2008.02.012
93. Kendrick SF, O’Boyle G, Mann J, et al. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 2010;51:1988–97.
https://doi.org/10.1002/hep.23572
95. Lucas JL, Mirshahpanah P, Haas-Stapleton E, Asadullahb K, Zollnerb TM, Numerof RP. Induction of Foxp3+ regulatory T cells with histone deacetylase inhibitors. Cell Immunol 2009;257:97–104.
https://doi.org/10.1016/j.cellimm.2009.03.004
99. Schedle K, Plitzner C, Ettle T, Zhao L, Domig KJ, Windisch W. Effects of insoluble dietary fibre differing in lignin on performance, gut microbiology, and digestibility in weanling piglets. Arch Anim Nutr 2008;62:141–51.
https://doi.org/10.1080/17450390801892617
102. Brufau MT, Martín-Venegas R, Guerrero-Zamora AM, et al. Dietary β-galactomannans have beneficial effects on the intestinal morphology of chickens challenged with Salmonella enterica serovar Enteritidis. J Anim Sci 2015;93:238–46.
https://doi.org/10.2527/jas.2014-7219
105. Fu X, Li R, Zhang T, Li M, Mou H. Study on the ability of partially hydrolyzed guar gum to modulate the gut microbiota and relieve constipation. J Food Biochem 2019;43:e12715.
https://doi.org/10.1111/jfbc.12715
106. Ahallil H, Abdullah A, Maskat MY, Sarbini SR. Fermentation of gum arabic by gut microbiota using in vitro colon model. AIP Conference Proceedings. AIP Publishing LLC; 2019. p. 050004
https://doi.org/10.1063/1.5111252
107. Singh Y, Molan AL, Ravindran V. Influence of the method of whole wheat inclusion on performance and caecal microbiota profile of broiler chickens. J Appl Anim Nutr 2019;7:E4.
https://doi.org/10.1017/jan.2019.3
109. Bailey JS, Blankenship LC, Cox NA. Effect of fructooligosaccharide on Salmonella colonization of the chicken intestine. Poult Sci 1991;70:2433–8.
https://doi.org/10.3382/ps.0702433
110. Kim JC, Mullan BP, Hampson DJ, Pluske JR. Addition of oat hulls to an extruded rice-based diet for weaner pigs ameliorates the incidence of diarrhoea and reduces indices of protein fermentation in the gastrointestinal tract. Br J Nutr 2008;99:1217–25.
https://doi.org/10.1017/S0007114507868462
111. Halas D, Hansen CF, Hampson DJ, Mullan BP, Wilson RH, Pluske JR. Effect of dietary supplementation with inulin and/or benzoic acid on the incidence and severity of post-weaning diarrhoea in weaner pigs after experimental challenge with enterotoxigenic Escherichia coli. Arch Anim Nutr 2009;63:267–80.
https://doi.org/10.1080/17450390903020414
112. Chen H, Mao X, He J, et al. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br J Nutr 2013;110:1837–48.
https://doi.org/10.1017/s0007114513001293
113. Wan R, Camandola S, Mattson MP. Intermittent food deprivation improves cardiovascular and neuroendocrine responses to stress in rats. J Nutr 2003;133:1921–9.
https://doi.org/10.1093/jn/133.6.1921
114. Hansen CF, Phillips ND, La T, et al. Diets containing inulin but not lupins help to prevent swine dysentery in experimentally challenged pigs. J Anim Sci 2010;88:3327–36.
https://doi.org/10.2527/jas.2009-2719
116. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013;145:396–406e10.
https://doi.org/10.1053/j.gastro.2013.04.056