2. Poonsuk K, Chuanchuen R. Contribution of the MexXY multidrug efflux pump and other chromosomal mechanisms on aminoglycoside resistance in Pseudomonas aeruginosa isolates from canine and feline infections. J Vet Med Sci 2012;74:1575–82.
https://doi.org/10.1292/jvms.12-0239
5. Gong Q, Ruan MD, Niu MF, Qin CL, Hou Y, Guo JZ. Immune efficacy of DNA vaccines based on oprL and oprF genes of Pseudomonas aeruginosa in chickens. Poult Sci 2018;97:4219–27.
https://doi.org/10.3382/ps/pey307
8. Balloy V, Verma A, Kuravi S, Si-Tahar M, Chignard M, Ramphal R. The role of flagellin versus motility in acute lung disease caused by Pseudomonas aeruginosa. J Infect Dis 2007;196:289–96.
https://doi.org/10.1086/518610
10. Zhang J, Xu K, Ambati B, Yu FSX. Toll-like receptor 5-mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin. Invest Ophthalmol Vis Sci 2003;44:4247–54.
https://doi.org/10.1167/iovs.03-0219
11. Goldstein BJ, Bittner-Kowalczyk A, White MF, Harbeck M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B: possible facilitation by the formation of a ternary complex with the grb2 adaptor protein. J Biol Chem 2000;275:4283–9.
https://doi.org/10.1074/jbc.275.6.4283
14. Zhang H, Ma Y, Yu JG. Theoretical studies on the mechanism of activation of phosphoprotein phosphatases and purple acid phosphatases suggest an evolutionary strategy to survive in acidic environments. J Biol Inorg Chem 2013;18:1019–26.
https://doi.org/10.1007/s00775-013-1053-x
18. Kusudo T, Sakaki T, Inouye K. Purification and characterization of purple acid phosphatase PAP1 from dry powder of sweet potato. Biosci Biotechnol Biochem 2003;67:1609–11.
https://doi.org/10.1271/bbb.67.1609
21. Faldynova M, Videnska P, Havlickova H, et al. Prevalence of antibiotic resistance genes in faecal samples from cattle, pigs and poultry. Vet Med 2013;58:298–304.
https://doi.org/10.17221/6865-VETMED
25. Schmeck B, Lorenz J, N’Guessan PD, et al. Histone acetylation and flagellin are essential for legionella pneumophila-induced cytokine expression. J Immunol 2008;181:940–7.
https://doi.org/10.4049/jimmunol.181.2.940
26. Xu M, Xie Y, Jiang C, et al. Treponema pallidum flagellins elicit proinflammatory cytokines from human monocytes via TLR5 signaling pathway. Immunobiology 2017;222:709–18.
https://doi.org/10.1016/j.imbio.2017.01.002
27. Nakamoto K, Watanabe M, Sada M, et al. Pseudomonas aeruginosa-derived flagellin stimulates IL-6 and IL-8 production in human bronchial epithelial cells: a potential mechanism for progression and exacerbation of COPD. Exp Lung Res 2019;45:255–66.
https://doi.org/10.1080/01902148.2019.1665147
30. Jiang C, Xu M, Kuang X, et al. Treponema pallidum flagellins stimulate MMP-9 and MMP-13 expression via TLR5 and MAPK/NF-κB signaling pathways in human epidermal keratinocytes. Exp Cell Res 2017;361:46–55.
https://doi.org/10.1016/j.yexcr.2017.09.040
35. Buddington RK, Sangild PT. Companion animals symposium: Development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life. J Anim Sci 2011;89:1506–19.
https://doi.org/10.2527/jas.2010-3705