1. Berry DP, Buckley F, Dillon P, Evans RD, Rath M, Veerkamp RF. Genetic relationships among body condition score, body weight, milk yield, and fertility in dairy cows. J Dairy Sci 2003;86:2193–204.
https://doi.org/10.3168/jds.S0022-0302(03)73809-0
4. DeVries TJ, Beauchemin KA, Dohme F, Schwartzkopf-Genswein KS. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: Feeding, ruminating, and lying behavior. J Dairy Sci 2009;92:5067–78.
https://doi.org/10.3168/jds.2009-2102
8. AOAC International. Official methods of analysis. Seventeen editionGaithersburg, MD, USA: Association of Official Analytical Chemists; 2003.
9. Gozho GN, Plaizier JC, Krause DO, Kennedy AD, Wittenberg KM. Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin release and triggers an inflammatory response. J Dairy Sci 2005;88:1399–403.
https://doi.org/10.3168/jds.S0022-0302(05)72807-1
10. Lamanna R, Braca A, Di Paolo E, Imparato G. Identification of milk mixtures by 1H NMR profiling. Magn Reson Chem 2011;49:S22–6.
https://doi.org/10.1002/mrc.2807
11. Wilson DM, Burlingame AL, Cronholm T, Sjövall J. Deuterium and carbon-13 tracer studies of ethanol metabolism in the rat by 2H, 1H-decoupled 13C nuclear magnetic resonance. Biochem Biophys Res Commun 1974;56:828–35.
https://doi.org/10.1016/0006-291X(74)90680-9
12. Nicholson JK, Wilson ID. Understanding’global’systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2003;2:668–76.
https://doi.org/10.1038/nrd1157
14. Humer E, Aditya S, Zebeli Q. Innate immunity and metabolomic responses in dairy cows challenged intramammarily with lipopolysaccharide after subacute ruminal acidosis. Animal 2018;12:2551–60.
https://doi.org/10.1017/S1751731118000411
15. Crowell WA, Whitlock RH, Stout RC, Tyler DE. Ethylene glycol toxicosis in cattle. Cornell Vet 1979;69:272–9.
16. Guo Y, Wang L, Zou Y, Xu X, Li S, Cao Z. Changes in ruminal fermentation, milk performance and milk fatty acid profile in dairy cows with subacute ruminal acidosis and its regulation with pelleted beet pulp. Arch Anim Nutr 2013;67:433–47.
https://doi.org/10.1080/1745039X.2013.842038
18. Deosthale YG, Mohan VS, Rao KV. Varietal differences in protein, lysine, and leucine content of grain sorghum. J Agric Food Chem 1970;18:644–6.
https://doi.org/10.1021/jf60170a028
20. Bergström J, Heimbürger O, Lindholm B. Calculation of the protein equivalent of total nitrogen appearance from urea appearance. Which formulas should be used? Perit Dial Int 1998;18:467–73.
https://doi.org/10.1177/089686089801800502
21. Promkot C, Wanapat M. Effect of level of crude protein and use of cottonseed meal in diets containing cassava chips and rice straw for lactating dairy cows. Asian-Australas J Anim Sci 2005;18:502–11.
https://doi.org/10.5713/ajas.2005.502
24. Khafipour E, Plaizier JC, Aikman PC, Krause DO. Population structure of rumen Escherichia coli associated with subacute ruminal acidosis (SARA) in dairy cattle. J Dairy Sci 2011;94:351–60.
https://doi.org/10.3168/jds.2010-3435
25. Heinrichs J, Jones C, Bailey K. Milk components: Understanding the causes and importance of milk fat and protein variation in your dairy herd. Dairy Anim Sci Fact Sheet 1997;5:1e–8e.
26. Minuti A, Ahmed S, Trevisi E, et al. Experimental acute rumen acidosis in sheep: Consequences on clinical, rumen, and gastrointestinal permeability conditions and blood chemistry. J Anim Sci 2014;92:3966–77.
https://doi.org/10.2527/jas.2014-7594
27. Ling B, Alcorn J. LPS-induced inflammation downregulates mammary gland glucose, fatty acid, and l-carnitine transporter expression at different lactation stages. Res Vet Sci 2010;89:200–2.
https://doi.org/10.1016/j.rvsc.2010.03.004
28. Li S, Gozho GN, Gakhar N, Khafipour E, Krause DO, Plaizier JC. Evaluation of diagnostic measures for subacute ruminal acidosis in dairy cows. Can J Anim Sci 2012;92:353–64.
https://doi.org/10.4141/cjas2012-004
30. Sutherland TM. The control and manipulation of rumen fermentation. Recent Adv Anim Nutr Aust 1977;1:110–29.