2. Mizrahi I. Rumen symbioses. The Prokaryotes. Berlin Heidelberg, Germany: Springer; 2013. p. 533–44.
4. Williams AG, Coleman GS. The rumen protozoa. Springer Series in Contemporary Bioscience. New York, USA: Springer-Verlag; 1992.
10. Ivan M, Neill L, Forster R, Alimon R, Rode LM, Entz T. Effects of Isotricha, Dasytricha, Entodinium, and total fauna on ruminal fermentation and duodenal flow in wethers fed different diets. J Dairy Sci 2000;83:776–87.
https://doi.org/10.3168/jds.S0022-0302(00)74940-X
11. Ivan M. Comparison of duodenal flow and digestibility in fauna-free sheep inoculated with holotrich protozoa, Entodinium monofauna or total mixed protozoa population. Br J Nutr 2009;101:34–40.
https://doi.org/10.1017/S0007114508984245
12. Dehority BA. Rumen microbiology. Nottingham, UK: Nottingham University Press; 2003.
13. Baraka T. Comparative studies of rumen pH, total protozoa count, generic and species composition of ciliates in camel, buffalo, cattle, sheep and goat in Egypt. J Am Sci 2012;8:448–62.
14. Imai S. Distribution of rumen ciliate protozoa in cattle, sheep and goat and experimental transfaunaiton of them. Nippon Chikusan Gakkaiho 1978;49:494–505.
https://doi.org/10.2508/chikusan.49.494
15. Imai S, Katsuno M, Ogimoto K. Type of the pattern of the rumen ciliate composition of the domestic ruminants and the predator-prey interaction of the ciliates. Nippon Chikusan Gakkaiho 1979;50:79–87.
https://doi.org/10.2508/chikusan.50.79
20. Coleman GS. The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen. J Agric Sci 1985;104:349–60.
https://doi.org/10.1017/S0021859600044038
21. Belanche A, de la Fuente G, Moorby JM, Newbold CJ. Bacterial protein degradation by different rumen protozoal groups. J Anim Sci 2012;90:4495–504.
https://doi.org/10.2527/jas.2012-5118
22. Morgavi DP, Sakurada M, Tomita Y, Onodera R. Electrophoretic forms of chitinolytic and lysozyme activities in ruminal protozoa. Curr Microbiol 1996;32:115–8.
https://doi.org/10.1007/s002849900020
25. Bonhomme A, Fonty G, Senaud J. Attempt to obtain and maintain rumen entodiniomorph ciliates in axenic cultures. Ann Microbiol (Paris) 1982;133:335–41.
28. Fondevila M, Dehority BA. In vitro growth and starch digestion by Entodinium exiguum as influenced by the presence or absence of live bacteria. J Anim Sci 2001;79:2465–71.
https://doi.org/10.2527/2001.7992465x
29. Fondevila M, Dehority BA. Preliminary study on the requirements of Entodinium exiguum and E. caudatum for live or dead bacteria when cultured in vitro. Reprod Nutr Dev 2001;41:41–6.
https://doi.org/10.1051/rnd:2001110
31. Kišidayová S, Váradyová Z, Zeleňák I, Siroka P. Methanogenesis in rumen ciliate cultures of Entodinium caudatum and Epidinium ecaudatum after long-term cultivation in a chemically defined medium. Folia Microbiol 2000;45:269–74.
https://doi.org/10.1007/BF02908958
33. Dehority BA. Generation times of Epidinium caudatum and Entodinium caudatum, determined in vitro by transferring at various time intervals. J Anim Sci 1998;76:1189–96.
https://doi.org/10.2527/1998.7641189x
35. Belanche A, de la Fuente G, Newbold CJ. Study of methanogen communities associated with different rumen protozoal populations. FEMS Microbiol Ecol 2014;90:663–77.
https://doi.org/10.1111/1574-6941.12423
37. Irbis C, Ushida K. Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J Gen Appl Microbiol 2004;50:203–12.
https://doi.org/10.2323/jgam.50.203
40. Xia Y, Kong YH, Seviour R, Forster RJ, Kisidayova S, McAllister TA. Fluorescence in situ hybridization probing of protozoal Entodinium spp. and their methanogenic colonizers in the rumen of cattle fed alfalfa hay or triticale straw. J Appl Microbiol 2014;116:14–22.
https://doi.org/10.1111/jam.12356
41. Valle ER, Henderson G, Janssen PH, Cox F, Alexander TW, McAllister TA. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions. Can J Microbiol 2015;61:417–28.
https://doi.org/10.1139/cjm-2014-0873
43. Dehority BA. Laboratory manual for classification and morphology of rumen ciliate protozoa. Boca Raton, FL, USA: CRC Press; 1993.
44. Imai S, Shinno T, Ike K, Morita T, Selim HM. Fourteen morphotypes of Entodinium ovumrajae (Ophryoscolecidae, Entodiniomorphida) found in the Dromedary camel of Egypt. J Eukaryot Microbiol 2004;51:594–7.
https://doi.org/10.1111/j.1550-7408.2004.tb00591.x
48. Guyader J, Eugène M, Nozière P, Morgavi DP, Doreau M, Martin C. Influence of rumen protozoa on methane emission in ruminants: a meta-analysis approach. Animal 2014;8:1816–25.
https://doi.org/10.1017/S1751731114001852
49. Ushida K, Newbold CJ, Jouany JP. Interspecies hydrogen transfer between the rumen ciliate Polyplastron multivesiculatum and Methanosarcina barkeri. J Gen Appl Microbiol 1997;43:129–31.
https://doi.org/10.2323/jgam.43.129
51. Tymensen LD, Beauchemin KA, McAllister TA. Structures of free-living and protozoa-associated methanogen communities in the bovine rumen differ according to comparative analysis of 16S rRNA and mcrA genes. Microbiology 2012;158:1808–17.
https://doi.org/10.1099/mic.0.057984-0
52. Ng F, Kittelmann S, Patchett ML, et al. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ Microbiol 2016;18:3010–21.
https://doi.org/10.1111/1462-2920.13155
56. Martínez-Fernández G, Abecia L, Arco A, et al. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J Dairy Sci 2014;97:3790–9.
https://doi.org/10.3168/jds.2013-7398
57. Haisan J, Sun Y, Guan LL, et al. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J Dairy Sci 2014;97:3110–9.
https://doi.org/10.3168/jds.2013-7834
58. Schilde M, von Soosten D, Hüther L, Meyer U, Zeyner A, Dänicke S. Effects of 3-nitrooxypropanol and varying concentrate feed proportions in the ration on methane emission, rumen fermentation and performance of periparturient dairy cows. Arch Anim Nutr 2021;75:79–104.
https://doi.org/10.1080/1745039X.2021.1877986
59. Romero-Perez A, Okine EK, McGinn SM, et al. The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. J Anim Sci 2014;92:4682–93.
https://doi.org/10.2527/jas.2014-7573
61. Newbold CJ, López S, Nelson N, Ouda JO, Wallace RJ, Moss AR. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br J Nutr 2005;94:27–35.
https://doi.org/10.1079/bjn20051445
62. Villar ML, Hegarty RS, Clay JW, Smith KA, Godwin IR, Nolan JV. Dietary nitrate and presence of protozoa increase nitrate and nitrite reduction in the rumen of sheep. J Anim Physiol Anim Nutr 2020;104:1242–55.
https://doi.org/10.1111/jpn.13365
63. Lin M, Schaefer DM, Guo WS, Ren LR, Meng QX. Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas J Anim Sci 2011;24:471–8.
https://doi.org/10.5713/ajas.2011.10288
65. Khurana R, Brand T, Tapio I, Bayat AR. Effect of a garlic and citrus extract supplement on performance, rumen fermentation, methane production, and rumen microbiome of dairy cows. J Dairy Sci 2023;106:4608–21.
https://doi.org/10.3168/jds.2022-22838
69. Patra AK, Min BR, Saxena J. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. Patra A, editorDietary phytochemicals and microbes. Dordrecht, The Netherlands: Springer; 2012. p. 237–62.
73. Darabighane B, Mahdavi A, Aghjehgheshlagh FM, Navidshad B, Yousefi MH, Lee MRF. The effects of dietary saponins on ruminal methane production and fermentation parameters in sheep: a meta analysis. Iranian J Appl Anim Sci 2021;11:15–21.
75. Orzuna-Orzuna JF, Dorantes-Iturbide G, Lara-Bueno A, Mendoza-Martínez GD, Miranda-Romero LA, Hernández-García PA. Effects of dietary tannins’ supplementation on growth performance, rumen fermentation, and enteric methane emissions in beef cattle: a meta-analysis. Sustainability 2021;13:7410.
https://doi.org/10.3390/su13137410
78. Park T, Wijeratne S, Meulia T, Firkins JL, Yu Z. The macronuclear genome of anaerobic ciliate Entodinium caudatum reveals its biological features adapted to the distinct rumen environment. Genomics 2021;113:1416–27.
https://doi.org/10.1016/j.ygeno.2021.03.014
80. Prins RA, Van Rheenen DL, van’t Klooster AT. Characterization of microbial proteolytic enzymes in the rumen. Antonie van Leeuwenhoek 1983;49:585–95.
https://doi.org/10.1007/BF00399852
83. Adachi K, Kawano H, Tsuno K, et al. Relationship between serum biochemical values and marbling scores in Japanese Black steers. J Vet Med Sci 1999;61:961–4.
https://doi.org/10.1292/jvms.61.961
85. Punia BS, Leibholz J, Faichney GJ. Rate of production of protozoa in the rumen and the flow of protozoal nitrogen to the duodenum in sheep and cattle given a pelleted diet of lucerne hay and barley. J Agric Sci 1992;118:229–36.
https://doi.org/10.1017/S0021859600068830
86. Sylvester JT, Karnati SKR, Yu Z, Newbold CJ, Firkins JL. Evaluation of a real-time PCR assay quantifying the ruminal pool size and duodenal flow of protozoal nitrogen. J Dairy Sci 2005;88:2083–95.
https://doi.org/10.3168/jds.S0022-0302(05)72885-X
87. Eugène M, Archimède H, Sauvant D. Quantitative meta-analysis on the effects of defaunation of the rumen on growth, intake and digestion in ruminants. Livest Prod Sci 2004;85:81–97.
https://doi.org/10.1016/S0301-6226(03)00117-9
88. Ivan M, Neill L, Entz T. Ruminal fermentation and duodenal flow following progressive inoculations of fauna-free wethers with major individual species of ciliate protozoa or total fauna. J Anim Sci 2000;78:750–9.
https://doi.org/10.2527/2000.783750x
89. Park T, Yang C, Yu Z. Specific inhibitors of lysozyme and peptidases inhibit the growth of the rumen protozoan Entodinium caudatum without decreasing feed digestion or fermentation in vitro. J Appl Microbiol 2019;127:670–82.
https://doi.org/10.1111/jam.14341
93. de la Fuente G, Fondevila M, Belanche A, Morgavi D. In vitro predation of pure bacterial species by rumen protozoa from monofaunated sheep, determined by qPCR. Options Mediterraneennes 2011;99:91–6.
94. Mosoni P, Martin C, Forano E, Morgavi DP. Long-term defaunation increases the abundance of cellulolytic ruminococci and methanogens but does not affect the bacterial and methanogen diversity in the rumen of sheep. J Anim Sci 2011;89:783–91.
https://doi.org/10.2527/jas.2010-2947
99. Pope PB, Smith W, Denman SE, et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science 2011;333:646–8.
https://doi.org/10.1126/science.1205760