3. Zhao X, Guo Y, Guo S, Tan J. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Appl Microbiol Biotechnol 2013;97:6477–88.
https://doi.org/10.1007/s00253-013-4970-2
5. Takahashi M, McCartney E, Knox A, et al. Effects of the butyric acid-producing strain Clostridium butyricum MIYAIRI 588 on broiler and piglet zootechnical performance and prevention of necrotic enteritis. Anim Sci J 2018;89:895–905.
https://doi.org/10.1111/asj.13006
13. Committee on Nutrient Requirements of Poultry, National Research Council. Nutrient Requirements of Poultry. 9th rev edWashington, DC, USA: National Academies Press; 1994.
18. Yu Y, Li Q, Zhang H, et al. Clostridium butyricum alone or combined with 1, 25-dihydroxyvitamin D3 improved early-stage broiler health by modulating intestinal flora. J Appl Microbiol 2022;132:155–66.
https://doi.org/10.1111/jam.15180
19. Mohamed TM, Sun W, Bumbie GZ, et al. Feeding Bacillus subtilis ATCC19659 to broiler chickens enhances growth performance and immune function by modulating intestinal morphology and cecum microbiota. Front Microbiol 2021;12:798350.
https://doi.org/10.3389/fmicb.2021.798350
22. Liao XD, Ma G, Cai J, et al. Effects of Clostridium butyricum on growth performance, antioxidation, and immune function of broilers. Poult Sci 2015;94:662–7.
https://doi.org/10.3382/ps/pev038
25. Nie C, Wang Y, Liu Y, et al. Impacts of dietary protein from fermented cottonseed meal on lipid metabolism and metabolomic profiling in the serum of broilers. Curr Protein Pept Sci 2020;21:812–20.
https://doi.org/10.2174/1389203721666200203152643
26. Lu Z, He X, Ma B, et al. Dietary taurine supplementation decreases fat synthesis by suppressing the liver X receptor α pathway and alleviates lipid accumulation in the liver of chronic heat-stressed broilers. J Sci Food Agric 2019;99:5631–7.
https://doi.org/10.1002/jsfa.9817
28. Filho STS, Da CLE, de Oliveira DH, et al. Supplemental l-arginine improves feed conversion and modulates lipid metabolism in male and female broilers from 29 to 42 days of age. Animal 2021;15:100120.
https://doi.org/10.1016/j.animal.2020.100120
29. Zhang B, Yang X, Guo Y, Long F. Effects of dietary lipids and Clostridium butyricum on serum lipids and lipid-related gene expression in broiler chickens. Animal 2011;5:1909–15.
https://doi.org/10.1017/S1751731111001066
31. Cui C, Shen CJ, Jia G, Wang KN. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genet Mol Res 2013;12:1766–76.
https://doi.org/10.4238/2013.May.23.1
32. Chen Y, Cheng Y, Wen C, Zhou Y. Protective effects of dietary mannan oligosaccharide on heat stress-induced hepatic damage in broilers. Environ Sci Pollut Res Int 2020;27:29000–8.
https://doi.org/10.1007/s11356-020-09212-2
34. Li X, Liu S, Wang J, et al. Effects of ND vaccination combined LPS on growth performance, antioxidant performance and lipid metabolism of broiler. Res Vet Sci 2021;135:317–23.
https://doi.org/10.1016/j.rvsc.2020.10.007
35. Yan R, Hui A, Kang Y, Zhou Y, Wang A. Effects of palygorskite composites on growth performance and antioxidant status in broiler chickens. Poult Sci 2019;98:2781–9.
https://doi.org/10.3382/ps/pez070
36. Bai K, Huang Q, Zhang J, He J, Zhang L, Wang T. Supplemental effects of probiotic Bacillus subtilis fmbJ on growth performance, antioxidant capacity, and meat quality of broiler chickens. Poult Sci 2017;96:74–82.
https://doi.org/10.3382/ps/pew246
38. Jacquier V, Nelson A, Jlali M, Rhayat L, Brinch KS, Devillard E. Bacillus subtilis 29784 induces a shift in broiler gut microbiome toward butyrate-producing bacteria and improves intestinal histomorphology and animal performance. Poult Sci 2019;98:2548–54.
https://doi.org/10.3382/ps/pey602
41. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006;444:1022–3.
https://doi.org/10.1038/4441022a