3. Mehmood T, Hassan MA, Li X, et al. Mechanism behind sources and sinks of major anthropogenic greeenhouse gasses. Dervash MA, Wani AA, editorsClimate change alleviation for sustainable progression. 1st edOxon, UK: CRC Press; 2023. p. 114–26.
9. Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M. Review: fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal 2020;14:S2–16.
https://doi.org/10.1017/S1751731119003100
15. Henderson G, Cook GM, Ronimus RS. Enzyme- and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. Anim Prod Sci 2018;58:1017–26.
https://doi.org/10.1071/AN15757
19. Attwood GT, Altermann E, Kelly WJ, Leahy SC, Zhang L, Morrison M. Exploring rumen methanogen genomes to identify targets for methane mitigation strategies. Anim Feed Sci Technol 2011;166–167:65–75.
https://doi.org/10.1016/j.anifeedsci.2011.04.004
29. Grabarse W, Mahlert F, Duin EC, et al. On the mechanism of biological methane formation: Structural evidence for conformational changes in methyl-coenzyme M reductase upon substrate binding. J Mol Biol 2001;309:315–30.
https://doi.org/10.1006/jmbi.2001.4647
31. Duin EC, Prakash D, Brungess C. Methyl-coenzyme M reductase from Methanothermobacter marburgensis. Rosenzweig AC, Ragsdale SW, editorsMethods in Enzymology; 1st edOxford, UK: Elsevier Inc; 2011. p. 159–87.
https://doi.org/10.1016/B978-0-12-385112-3.00009-3
35. Konisky J. Inhibitory effects of 2-bromoethanesulfonate and protection by addition of coenzyme M in hydrogen-oxidizing marine enrichment cultures. FEMS Microbiol Ecol 1990;6:239–42.
https://doi.org/10.1016/0378-1097(90)90736-A
37. Karp PD, Billington R, Caspi R, et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform 2018;20:1085–93.
https://doi.org/10.1093/bib/bbx085
38. Dumitru RV, Ragsdale SW. Mechanism of 4-(β-D-ribofuranosyl)aminobenzene 5′-phosphate synthase, a key enzyme in the methanopterin biosynthetic pathway. J Biol Chem 2004;279:39389–95.
https://doi.org/10.1074/jbc.M406442200
40.
Miner JL
Ragsdale SW
Takacs JM
Board of Regents of the University of Nebraska. Method for the inhibition of methanogenesis. Geneva, Switzerland: World Intellectual Property Organization; 2003. May. 8WO 2003038109A2
43. Joseph E, Le CQ, Nguyen T, et al. Evidence of negative cooperativity and half-site reactivity within an F420-dependent enzyme: kinetic analysis of F420H2:NADP+ oxidoreductase. Biochemistry 2016;55:1082–90.
https://doi.org/10.1021/acs.biochem.5b00762
47. Schäfer IB, Bailer SM, Düser MG, et al. Crystal structure of the archaeal A1AO ATP synthase subunit B from Methanosarcina mazei Gö1: implications of nucleotide-binding differences in the major A1AO subunits A and B. J Mol Biol 2006;358:725–40.
https://doi.org/10.1016/j.jmb.2006.02.057
48. Aung HL, Dey D, Janssen PH, Ronimus RS, Cook GM. A high-throughput screening assay for identification of inhibitors of the A1AO-ATP synthase of the rumen methanogen Methanobrevibacter ruminantium M1. J Microbiol Methods 2015;110:15–7.
https://doi.org/10.1016/j.mimet.2014.12.022
50. Kumar A, Manimekalai MSS, Grüber G. Structure of the nucleotide-binding subunit B of the energy producer A 1A0 ATP synthase in complex with adenosine diphosphate. Acta Crystallogr D Struct Biol 2008;D64:1110–5.
https://doi.org/10.1107/s090744490802790x
56. Sneha P, Doss CGP. Molecular dynamics: new frontier in personalized medicine. Donev R, editorAdvances in protein chemistry and structural biology. 1st edOxford, UK: Elsevier Inc; 2016. p. 181–224.
https://doi.org/10.1016/bs.apcsb.2015.09.004
61. Kontoyianni M. Docking and virtual screening in drug discovery. Lazar IM, Kontoyianni M, Lazar AC, editorsProteomics for Drug Discovery Methods in Molecular Biology. New York, USA: Humana Press; 2018. 1647:p. 255–66.
https://doi.org/10.1007/978-1-4939-7201-2_18
65. Muhammed MT, Aki-Yalcin E. Homology modeling in drug discovery: overview, current applications, and future perspectives. Chem Biol Drug Des 2019;93:12–20.
https://doi.org/10.1111/cbdd.13388
67. Villar HO. Library design, chemical space, and drug likeness. Cavasotto CN, editorSilico Drug Discovery and Design. 1st edBoca Raton, FL, USA: CRC Press; 2015. p. 79–94.
72. Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006;34:Suppl 1D668–72.
https://doi.org/10.1093/nar/gkj067
74. Gallo K, Kemmler E, Goede A, et al. SuperNatural 3.0 - a database of natural products and natural product-based derivatives. Nucleic Acids Res 2023;51:D654–9.
https://doi.org/10.1093/nar/gkac1008
82. Tietze S, Apostolakis J. GlamDock: development and validation of a new docking tool on several thousand protein-ligand complexes. J Chem Inf Model 2007;47:1657–72.
https://doi.org/10.1021/ci7001236
85. Hogues H, Gaudreault F, Corbeil CR, Deprez C, Sulea T, Purisima EO. ProPOSE: direct exhaustive protein-protein docking with side chain flexibility. J Chem Theory Comput 2018;14:4938–47.
https://doi.org/10.1021/acs.jctc.8b00225
86. Friesner RA, Banks JL, Murphy RB, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy. J Med Chem 2004;47:1739–49.
https://doi.org/10.1021/jm0306430
88. Lill M. Virtual screening in drug design. Kortagere S, editorIn Silico Models for Drug Discovery Methods in Molecular Biology. Totowa, NJ, USA: Humana Press; 2013. 1–12.
https://doi.org/10.1007/978-1-62703-342-8_1
89. Herrera-Acevedo C, Perdomo-Madrigal C, de Luis JAS, Scotti L, Scotti MT. Drug discovery paradigms: target-based drug discovery. Scotti MT, Bellera CL, editorsDrug target selection and validation. Cham, Switzerland: Springer; 2022. p. 1–24.
90. Trott O. Vina video tutorial [Internet]. La Jolla, CA, USA: Center for Computational Structural Biology; c2018. [cited 2024 Feb 4]. Available from:
https://vina.scripps.edu/tutorial/
93. Abraham MJ, Murtola T, Schulz R, et al. Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1–2:19–25.
https://doi.org/10.1016/j.softx.2015.06.001
94. Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wiley Interdiscip Rev Comput Mol Sci 2013;3:198–210.
https://doi.org/10.1002/wcms.1121
97. Bowers KJ, Chow DE, Xu H, et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In : Proceedings of the 2006 ACM/IEEE Conference on Supercomputing; 2006 November 11–17; Tampa, FL, USA. New York, USA: Association for Computing Machinery; 2006. p. 84-es
104. Kim KH, Arokiyaraj S, Lee J, et al. Effect of rhubarb (Rheum spp.) root on in vitro and in vivo ruminal methane production and a bacterial community analysis based on 16S rRNA sequence. Anim Prod Sci 2016;56:402–8.
https://doi.org/10.1071/AN15585
107. Khusro A, Aarti C, Salem AZM, Pliego AB, Rivas-Caceres RR. Methyl-coenzyme M reductase (MCR) receptor as potential drug target for inhibiting methanogenesis in horses using Moringa oleifera L.: an in silico docking study. J Equine Vet Sci 2020;88:102949.
https://doi.org/10.1016/j.jevs.2020.102949
108. Khusro A, Sahibzada MUK, Khan SU, et al. Anti-methanogenic traits of safflower oil compounds against methyl-coenzyme m reductase receptor in equines: an in silico docking analysis. J Equine Vet Sci 2022;113:103938.
https://doi.org/10.1016/j.jevs.2022.103938